Astrophysics and Space Science

, Volume 202, Issue 2, pp 209–214 | Cite as

Chaos in streaming MHD flows

  • S. K. Malik
  • M. Singh


Taking into account the effect of external driving, Kelvin-Helmholtz instability in hydromagnetics is studied to determine a local criterion for the existence of chaotic motion with the use of Melnikov function. Also obtained is the most chaotic frequency.


Chaotic Motion Local Criterion External Driving Melnikov Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandrasekhar, S.: 1961,Hydrodynanic and Hydromagnetic Stability, Oxford.Google Scholar
  2. Drazin, P.G.: 1970,J. Fluid Mech. 42, 321.Google Scholar
  3. Guckenheimer, J. and Holmes, P.: 1983,Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer.Google Scholar
  4. Malik, S.K. and Singh, M., 1985:Astrophysics Space Sci. 109, 231.Google Scholar
  5. Nayfeh, A.H. and Saric, W.S.: 1972,J. Fluid Mech. 55, 311.Google Scholar
  6. Newton. P.K., 1988,Phys. Review 37A, 932.Google Scholar
  7. Weissman, M.A.: 1979,Phil. Trans. Roy. Soc. London. 290, 58.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • S. K. Malik
    • 1
  • M. Singh
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations