Advertisement

Transport in Porous Media

, Volume 19, Issue 2, pp 157–197 | Cite as

On the continuum modelling of porous media containing fluid: a molecular viewpoint with particular attention to scale

  • A. I. Murdoch
  • J. Kubik
Article

Abstract

Mass conservation and linear momentum balance relations for a porous body and any fluid therein, valid at any given length scale in excess of nearest-neighbour molecular separations, are established in terms of local weighted averages of molecular quantities. The mass density field for the porous body at a given scale is used to identify its boundary at this scale, and a porosity field is defined for any pair of distinct length scales. Specific care is paid to the interpretation of the stress tensor associated with each of the body and fluid at macroscopic scales, and of the force per unit volume each exerts on the other. Consequences for the usual microscopic and macroscopic viewpoints are explored.

Key words

Boundary continuum modelling porous media containing fluid scale dependence weighted molecular averages 

Nomenclature

\(\mathcal{M}\)

material system; Section 2.1.

\(\mathcal{P}\)

porous body (example of a material system); Sections 2.1, 3.1, 4.1

\(\mathcal{F}\)

fluid body (example of a material system); Sections 2.1, 3.1, 4.1

ψ

weighting function; Sections 2.1, 2.3

ψɛ,h

weighting function corresponding to spherical averaging regions of radiusε and boundary mollifying layer of thicknessh; Section 3.2

ε

Euclidean space; Section 2.1

V

space of all displacements between pairs of points inε; Section 2.1

ρψ

mass density field corresponding toψ; (2.3)1

ρψP,ψψf

mass density fields for\(\mathcal{P}\),\(\mathcal{F}\); (4.1)

Pψ

momentum density field corresponding toψ; (2.3)2

vψ

velocity field corresponding toψ; (2.4)

Sr(X)

interior of sphere of radiusr with centre at pointx; (3.3)

\(\partial \mathcal{R}\)

boundary ofany region\(\mathcal{R}\)

\(^ + \mathcal{R}_{\varepsilon , h}^p \)

region in whichρ ψ p > 0 withψ =ψɛ,h; (3.1)

\(\mathcal{R}_{\varepsilon , h}^p \)

subset of\(^ + \mathcal{R}_{\varepsilon , h}^p \) whose points lie at leastε+h from boundary of\(^ + \mathcal{R}_{\varepsilon , h}^p \); (3.4)

\(^ + \mathcal{R}_{\varepsilon }^p , \mathcal{R}_\varepsilon ^p \)

abbreviated versions of\(^ + \mathcal{R}_{\varepsilon , h }^p , \mathcal{R}_{\varepsilon , h}^p \); Section 3.2, Remark 4

\(^ - \mathcal{R}_{\varepsilon }^p \)

strict interior of\(\mathcal{R}_{\varepsilon }^p \); (3.7)

\(^ + \mathcal{R}_{\varepsilon }^f , \mathcal{R}_{\varepsilon }^f , ^ - \mathcal{R}_{\varepsilon }^f \)

analogues of\(^ + \mathcal{R}_{\varepsilon }^p , \mathcal{R}_{\varepsilon }^p , ^ - \mathcal{R}_{\varepsilon }^p \) for fluid system\(\mathcal{F}\); Section 3.2

\(^ \pm \mathcal{R}_{\psi }^p , ^ \pm \mathcal{R}_{\psi }^f \)

general version of\(^ \pm \mathcal{R}_{\varepsilon }^p , ^ \pm \mathcal{R}_{\varepsilon }^f \) corresponding to any choice of weighting functionψ; (4.6)

\(\mathcal{I}_{\varepsilon }^p \)

\(\mathcal{P}\) interfacial region at scaleε; (3.8)

ε0

scale of nearest-neighbour separations in\(\mathcal{P}\); Section 3.2. Remark 1

\(p_{\varepsilon _{1,} \varepsilon _2 } \)

porosity field at scales (ε1;ε2); (3.9)

\(\mathcal{S}_{\varepsilon _{1,} \varepsilon _2 }^{pore} \)

pore space at scales (ε1;ε2); (3.12)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, A. W.: 1960,Physical Chemistry of Surfaces, Interscience, New York.Google Scholar
  2. Atkin, R. J. and Craine, R. E.: 1976, Continuum theories of mixtures,Q.J. Mech. Appl. Math. 29, 209–244.Google Scholar
  3. Bachmat, Y. and Bear, J.: 1986, Macroscopic modelling of transport phenomena in porous media, 1. The continuum approach,Transport in Porous Media 1, 213–240.Google Scholar
  4. Bear, J.: 1972,Dynamics of Fluids in Porous Media, Elsevier, Amsterdam.Google Scholar
  5. Beavers, G. S. and Joseph, D. D.: 1967, Boundary conditions at a naturally permeable wall,J. Fluid Mech. 30, 197–207.Google Scholar
  6. Bedford, A. and Drumheller, D. S.: 1983, Recent advances: theories of immiscible and structured mixtures,Int. J. Eng. Sci. 21, 863–960.Google Scholar
  7. Bowen, R. M.: 1976, Theory of mixtures, in A. C. Eringen (ed),Continuum Physics, Vol. III, Academic Press, New York.Google Scholar
  8. Brush, S. G.: 1986,The Kind of Motion we Call Heat, North-Holland, Amsterdam.Google Scholar
  9. Defay, R., Prigogine, I., and Bellemans, A.: 1966,Surface Tension and Adsorption, Longman, London.Google Scholar
  10. Dullien, F. A. L.: 1979,Porous Media, Fluid Transport and Pore Structure, Academic Press, New York.Google Scholar
  11. Eringen, A. C.: 1967,Mechanics of Continua, Wiley, New York.Google Scholar
  12. Hassanizadeh, M. and Gray, W. G.: 1979, General conservation equations for multiphase systems, 1. Averaging procedure,Adv. Water Resour. 2, 131–144.Google Scholar
  13. Irving, J. H. and Kirkwood, J. G.: 1950, The statistical mechanical theory of transport processes, IV. The equations of hydrodynamics,J. Chem. Phys. 18, 817–829.Google Scholar
  14. Kosiński, W., 1991, A phenomenological approach to fluid-phase interfaces, in W. Kosiński and A. I. Murdoch (eds),Modelling Macroscopic Phenomena at Liquid Boundaries, Springer, Vienna, New York.Google Scholar
  15. Landau, L. D. and Lifschitz, E. M.: 1959,Fluid Mechanics, Pergamon, London.Google Scholar
  16. Murdoch, A. I.: 1985, A corpuscular approach to continuum mechanics: basic considerations, Arch. Ration. Mech. Anal.88, 291–321.Google Scholar
  17. Murdoch, A. I.: 1990, A remark on the modelling of thin three-dimensional regions, in G. Eason and R. W. Ogden (eds),Elasticity: Mathematical Methods and Applications Ellis Horwood, Chichester.Google Scholar
  18. Murdoch, A. I.: 1991, On the physical interpretation of fluid interfacial concepts and fields, in W. Kosiński and A. I. Murdoch (eds),Modelling Macroscopic Phenomena at Liquid Boundaries Springer, Vienna, New York.Google Scholar
  19. Murdoch, A. I. and Bedeaux, D., 1993, On the physical interpretation of fields in continuum mechanics,Int. J. Eng. Sci. 31, 1345–1373.Google Scholar
  20. Murdoch, A. I. and Bedeaux, D.: 1994, Continuum equations of balance via weighted averages of corpuscular quantities,Proc. Roy. Soc. A 445, 157–179.Google Scholar
  21. Nicholson, M. M.: 1955, Surface tension in ionic crystals,Proc. Roy. Soc. A 228, 490–510.Google Scholar
  22. Noll, W.: 1955, Die Herleitung der Grundleichungen der Thermomechanik der Kontinua aus der statistischen Mechanik,J. Ration. Mech. Analysis 4, 627–646.Google Scholar
  23. Prat, M.: 1989, On the boundary conditions at the macroscopic level,Transport in Porous Media 4, 259–280.Google Scholar
  24. Quintard, M. and Whitaker, S.: 1994, Transport in ordered and disordered porous media I: the cellular average and the use of weighting functions,Transport in Porous Media 14, 163–177.Google Scholar
  25. Truesdell, C. and Noll, W.: 1965,The Non-Linear Field Theories of Mechanics, Handbuch der Physik, Vol. III/3 (ed. S. Flügge), Springer, Berlin.Google Scholar
  26. Whitaker, S.: 1969, Advances in theory of fluid motion in porous media,Ind. Eng. Chem. 61, 14–28.Google Scholar
  27. Whitaker, S.: 1986, Flow in porous media I: A theoretical derivation of Darcy's law,Transport in Porous Media 1, 3–25.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • A. I. Murdoch
    • 1
  • J. Kubik
    • 2
  1. 1.Department of MathematicsUniversity of StrathclydeGlasgowScotland, UK
  2. 2.IPPT-PANPoznańPoland

Personalised recommendations