Transport in Porous Media

, Volume 19, Issue 2, pp 123–137 | Cite as

Comparison of fast algorithms for estimating large-scale permeabilities of heterogeneous media

  • J. F. McCarthy


The problem of upscaling permeability data from the core to the reservoir grid block scale for input into flow simulators is addressed. Two fast, approximate algorithms which have been suggested for this purpose—one based on random walks and the other on real-space renormalisation group methods—are compared using the results of numerical tests performed on 30 different heterogeneous permeability realisations in 3-D. The results show that random walks outperform renormalisation for this problem, being computationally more efficient and demonstrating significantly better accuracy for particular cases.

Key words

Effective permeability heterogeneity renormalisation group method random walks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Indelman, P. and Dagan, G.: 1993, Upscaling of permeability of anisotropic heterogeneous formations: 1. The general framework,Water Resour. Res. 29, 917–923.Google Scholar
  2. 2.
    Rubin, Y. and Gomez-Hernandez, J. J.: 1990, A stochastic approach to the problem of upscaling of conductivity in disordered media: Theory and unconditional numerical simulations,Water Resour. Res. 26, 691–701.Google Scholar
  3. 3.
    Durlofsky, L. J.: 1991, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media,Water Resour. Res. 27, 699–708.Google Scholar
  4. 4.
    Warren, J. E. and Price, H. S.: 1961, Flow in heterogeneous porous media,SPE J. 1, 153–169.Google Scholar
  5. 5.
    Begg, S. H., Carter, R. R. and Dranfield, P.: 1989, Assigning effective values to simulator gridblock parameters for heterogeneous reservoirs,SPE Reservoir Eng. November, 455–463.Google Scholar
  6. 6.
    Dimitrakopolous, R. and Desbarats, A. J.: 1993, Geostatistical modeling of gridblock permeabilities for 3-D reservoir simulators,SPE Reservoir Eng. 8, 13–18.Google Scholar
  7. 7.
    King, P. R.: 1988, Effective values in averaging, in S. Edwards and P. R. King (eds),Mathematics in Oil Production, Clarendon Press, Oxford, pp. 217–234.Google Scholar
  8. 8.
    King, P. R.: 1989, The use of renormalisation for calculating effective permeability,Transport in Porous Media 4, 37–58.Google Scholar
  9. 9.
    Williams, J. K.: 1992, Simple renormalization schemes for calculating effective properties of heterogeneous reservoirs, in P. R. King (ed),The Mathematics of Oil Recovery, Clarendon Press, Oxford, pp. 281–298.Google Scholar
  10. 10.
    Hinrichsen, E. L., Aharony, A., Feder, J., Hansen, A. and Jossang, T.: 1993, A fast algorithm for estimating large-scale permeabilities of correlated anisotropic media,Transport in Porous Media 12, 55–72.Google Scholar
  11. 11.
    McCarthy, J. F.: 1991, Analytical models of the effective permeability of sandstone-shale reservoirs,Geophys. J. Int. 105, 513–527.Google Scholar
  12. 12.
    McCarthy, J. F.: 1991, Effective permeability of sandstone-shale reservoirs by a random walk method,J. Phys. A: Maths. Gen. 23, L445–451.Google Scholar
  13. 13.
    McCarthy, J. F.: 1993, Continuous time random walks on random media,J. Phys. A: Maths. Gen. 26, 2495–2503.Google Scholar
  14. 14.
    McCarthy, J. F.: 1993, Reservoir characterization: Efficient random walk methods for upscaling and image selection, inProc. SPE Asia Pacific Oil and Gas Conf., Singapore, pp. 159–171.Google Scholar
  15. 15.
    Frank, D. J. and Lobb, C. J.: 1988, Highly efficient algorithm for percolative transport studies in two dimensions,Phys. Rev. B 13, 302.Google Scholar
  16. 16.
    Derrida, B., Zabolitsky, J. G., Vannimenus, J. and Staufeer, D.: 1984,J. Stat. Phys. 36, 31.Google Scholar
  17. 17.
    Schwartz, L. M. and Banavar, J. R.: 1989,Phys. Rev. B 39, 11965.Google Scholar
  18. 18.
    Tobochnik, J., Laing, D. and Wilson, G.: 1990, Random-walk calculation of conductivity in continuum percolation,Phys. Rev. A 41, 3052.Google Scholar
  19. 19.
    Barber, M. N. and Ninham, B. W.: 1970,Random and Restricted Walks: Theory and Applications, Gordon and Breach, New York.Google Scholar
  20. 20.
    Batrouni, G. G. and Hansen, A.: 1988,J. Stat. Phys. 52, 747.Google Scholar
  21. 21.
    Aziz, K. and Settari, A.: 1979,Petroleum Reservoir Simulation, Applied Science Publishers, London.Google Scholar
  22. 22.
    Press, W., Flannery, B., Teukolsky, S. and Vetterling, W.: 1989,Numerical Recipes, Cambridge University Press, Cambridge.Google Scholar
  23. 23.
    Deutsch, C. V. and Journel, A. G.: 1992,GSLIB: Geostatistical Software Library and User's Guide, Oxford University Press, Oxford.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • J. F. McCarthy
    • 1
  1. 1.BHP ResearchMelbourne LaboratoriesClaytonAustralia

Personalised recommendations