Advertisement

Transport in Porous Media

, Volume 19, Issue 2, pp 93–122 | Cite as

A multi-scale theory of swelling porous media: I. Application to one-dimensional consolidation

  • Márcio A. Murad
  • Lynn S. Bennethum
  • John H. Cushman
Article

Abstract

A theory is developed which describes flow in multi-scale, saturated swelling media. To upscale information, both the hybrid theory of mixtures and the homogenization technique are employed. In particular, a model is formulated in which vicinal water (water adsorbed to the solid phase) is treated as a separate phase from bulk (non-vicinal) water. A new form of Darcy's law governing the flow of both vicinal and bulk water is derived which involves an interaction potential to account for the swelling nature of the system. The theory is applied to the classical one-dimensional consolidation problem of Terzaghi and to verify Low's empirical, exponential, swelling result for clay at the macroscale.

Key words

Swelling clay soil multi-scale flow hybrid mixture theory homogenization consolidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achanta, S. and Cushman, J. H.: 1994, Non-equilibrium swelling and capillary pressure relations for colloidal systems,J. Col. Int. Sci. 168, 266–268.Google Scholar
  2. 2.
    Achanta, S., Cushman, J. H. and Okos, M. R.: 1994, On multicomponent, multiphase thermo-mechanics with interfaces,Int. J. Engrg. Sci. 32(11), 1717–1738.Google Scholar
  3. 3.
    Auriault, J. L.: 1987, Nonsaturated deformable porous media: Quasistatics,Transport in Porous Media 2, 45–64.Google Scholar
  4. 4.
    Auriault, J. L.: 1990, Behavior of porous saturated deformable media, in F. Darve (ed),Geomaterials: Constitutive Equations and Modelling, Elsevier, New York, pp. 311–328.Google Scholar
  5. 5.
    Auriault, J. L., Lebaigue, O. and Bonnet, G.: 1989, Dynamics of two immiscible fluids flowing through a deformable porous media,Transport in Porous Media 4, 105–128.Google Scholar
  6. 6.
    Auriault, J. L., Strzelecki, T., Bauer, J., and He, S.: 1990, Porous deformable media saturated by a very compressible fluid: quasi-statics,Eur. J. Mech. A: Solids 4, 373–392.Google Scholar
  7. 7.
    Bachmat, Y. and Bear, J.: 1986, Macroscopic modelling of transport phenomena in porous media, I. The continuum approach; II Applications to mass, momentum and energy transport,Transport in Porous Media 1, 213–269.Google Scholar
  8. 8.
    Barden, L.: 1965, Consolidation of clay with nonlinear viscosity,Geotechnique 15, 345–361.Google Scholar
  9. 9.
    Bedford, A. and Dramheller, D. S.: 1983, Theories of immiscible and structured mixtures,Int. J. Engrg. Sci. 21(8), 863–960.Google Scholar
  10. 10.
    Bensoussan, A., Lions, J. L. and Papanicolaou, G.: 1978,Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam.Google Scholar
  11. 11.
    Biot, M.: 1941, General theory of three-dimensional consolidation,J. Appl. Phys. 12, 155–164.Google Scholar
  12. 12.
    Bouré, J. A.: 1987, Two-phase flow models: The closure issue, in G. F. Hewitt, J. M. Delhaye and N. Zuber (eds),Multiphase Science and Technology, Vol. 3, Marcel Dekker, New York, pp. 3–30.Google Scholar
  13. 13.
    Bowen, R. M.: 1976, Theory of mixtures, in A. C. Eringen (ed),Continuum Physics, Vol. 3, Academic Press, New York.Google Scholar
  14. 14.
    Bowen, R. M.: 1980, Incompressible porous media models by use of the theory of mixtures,Int. J. Engrg. Sci. 18, 1129–1148.Google Scholar
  15. 15.
    Bowen, R. M.: 1982, Compressible porous media models by use of the theory of mixtures,Int. J. Engrg. Sci. 20, 697–735.Google Scholar
  16. 16.
    Callen, H.: 1980,Thermodynamics, Wiley, New York.Google Scholar
  17. 17.
    Chenmin, M. A. and Hueckel, T.: 1992, Effects of inter-phase mass transfer in heated clays: A mixture theory,Int. J. Engrg. Sci. 30(11), 1567–1582.Google Scholar
  18. 18.
    Cherubini, C., Vacca, G. and Giasi, C. I.: 1988, Modelling non-darcian flow in one-dimensional consolidation,Computers and Geotechnics 6, 247–264.Google Scholar
  19. 19.
    Coleman, B. D. and Noll, W.: 1963, The thermodynamics of elastic materials with heat conduction and viscosity,Arch. Rat. Mech. Anal. 13, 167–178.Google Scholar
  20. 20.
    Crochet, M. J. and Naghdi, P. M.: 1966, On constitutive equations for flow of fluid through an elastic solid,Int. J. Engrg. Sci. 4, 383–401.Google Scholar
  21. 21.
    Cushman, J. H.: 1990,Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York.Google Scholar
  22. 22.
    Cushman, J. H.: Molecular-scale lubrication,Nature 347, 227–228.Google Scholar
  23. 23.
    Davis, E. H. and Raymond, G. P.: 1965, A non-linear theory of consolidation,Geotechnique 15, 161–173.Google Scholar
  24. 24.
    Douglas Jr., J. and Arbogast, T.: 1990, Dual porosity models for flow in naturally fractured reservoirs, in J. H. Cushman (ed),Dynamics of Fluid in Hierarchical Porous Media: 1978, Academic Press, New York, pp. 177–222.Google Scholar
  25. 25.
    Drumheller, D. S.: 1978, The theoretical treatment of a porous solid using a mixture theory,Int. J. Solids Structures 14, 441–456.Google Scholar
  26. 26.
    Ene, H. I. and Vernescu, B.: 1985, Homogenization of a singular perturbation problem,Rev. Roum. Math. Pure Appl. 30, 815–822.Google Scholar
  27. 27.
    Eringen, A. C.: 1967,Mechanics of Continua, Wiley, New York.Google Scholar
  28. 28.
    Gibson, R. E., England, G. L. and Hussey, M. J. L.: 1967, The theory of one-dimensional consolidation of saturated clays,Geotechnique 17, 261–273.Google Scholar
  29. 29.
    Gibson, R. E. and Lo, K. Y.: 1961, A theory of consolidation of soils exhibiting secondary compression,Norweg. Geotech. Inst. Publ. 41, 1–16.Google Scholar
  30. 30.
    Gray, W. G. and Hassanizadeh, S. M.: 1991, Unsaturated flow theory including interfacial phenomena,Water Resour. Res. 27, 1855–1863.Google Scholar
  31. 31.
    Green, A. E. and Steel, T. R.: 1966, Constitutive equations for interacting continua,Int. J. Engrg. Sci. 4, 483–500.Google Scholar
  32. 32.
    Grim, R. E.: 1968,Clay Mineralogy, McGraw-Hill, New York.Google Scholar
  33. 33.
    Hassanizadeh, S. M. and Gray, W. G.: 1979, General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations,Adv. Water Resour. 2, 191–208.Google Scholar
  34. 34.
    Hassanizadeh, S. M. and Gray, W. G.: 1980, General conservation equations for multiphase systems: 3. Constitutive theory for porous media,Adv. Water Resour. 3, 25–40.Google Scholar
  35. 35.
    Hassanizadeh, S. M. and Gray, W. G.: 1990, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries,Adv. Water Resour. 13, 169–186.Google Scholar
  36. 36.
    Karalis, T. K.: 1990, On the elastic deformation of non-saturated swelling soils,Acta Mechanica 84, 19–45.Google Scholar
  37. 37.
    Karalis, T. K.: 1993, Water flow in non-saturated swelling soil,Int. J. Engrg. Sci. 31, 751–774.Google Scholar
  38. 38.
    Liu, I. S.: 1972, Method of Lagrange multipliers for exploitation of the entropy principle,Arch. Rat. Mech. Anal. 46, 131–148.Google Scholar
  39. 39.
    Low, P. F.: 1976, Viscosity of interlayer water in montmorillonites,Soil Sci. Soc. Am. J. 40, 500–505.Google Scholar
  40. 40.
    Low, P. F.: 1979, Nature and properties of water in montmorillonite-water systems,Soil Sci. Soc. Am. J. 43, 651–658.Google Scholar
  41. 41.
    Low, P. F.: 1980, The swelling of clay: II. Montmorillonite-water systems,Soil Sci. Soc. Am. J. 44(4), 667–676.Google Scholar
  42. 42.
    Mikasa, M.: 1965, The consolidation of soft clay: A new consolidation theory and its application,Civil Engineering in Japan: Japan Society of Civil Engrg., pp. 21–26.Google Scholar
  43. 43.
    Pazy, A.: 1983, Semigroups of linear operators and applications to partial differential equations, in F. John, J. E. Marsden and L. Sirovich (eds),Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York.Google Scholar
  44. 44.
    Philip, J. R.: 1969, Hydrostatics and hydrodynamics in swelling soils,Water Resour. Res. 5, 1070–1077.Google Scholar
  45. 45.
    Roscoe, K. H. and Burlan, J. B.: 1968, On the generalized stress-strain behavior of wet clays, in J. V. Hayman and F. A. Leckie (eds),Engineering Plasticity, Cambridge University Press, Cambridge, UK, pp. 535–609.Google Scholar
  46. 46.
    Sanchez-Palencia, E.: 1980, Non-homogeneous media and vibration theory, in J. Ehlers (ed),Lecture Notes in Physics, Vol. 127, Springer-Verlag, New York.Google Scholar
  47. 47.
    Sridharan, A. and Rao, G. V.: 1973, Mechanisms controlling volume change of saturated clays and the role of the effective stress concept,Geotechnique 23(3), 359–382.Google Scholar
  48. 48.
    Terzaghi, K.: 1942,Theoretical Soil Mechanics, Wiley, New York.Google Scholar
  49. 49.
    Whitaker, S.: 1986, Flow in porous media, I. A theoretical derivation of Darcy's law,Transport in Porous Media 1, 3–25.Google Scholar
  50. 50.
    Yosida, K.: 1980,Functional Analysis, Springer-Verlag, New York.Google Scholar
  51. 51.
    Zangwill, A.: 1988,Physics of Surfaces, Cambridge University Press, New York.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Márcio A. Murad
    • 1
    • 2
  • Lynn S. Bennethum
    • 3
  • John H. Cushman
    • 4
  1. 1.Laboratório National de ComputaÇÃo CientificaLNCC/CNPqRio de JaneiroBrazil
  2. 2.The Center for Applied MathPurdue UniversityWest LafayetteUSA
  3. 3.Department of MathematicsPurdue UniversityWest LafayetteUSA
  4. 4.Department of Mathematics and Department of AgronomyPurdue UniversityWest LafayetteUSA

Personalised recommendations