Letters in Mathematical Physics

, Volume 20, Issue 4, pp 299–308 | Cite as

Dual moment maps into loop algebras

  • M. R. Adams
  • J. Harnad
  • J. Hurtubise


Moment maps are defined from the space of rank-r deformations of a fixedn xn matrixA to the duals\((\widetilde{g1}(r)^ + )^* , (\widetilde{g1}(n)^ + )^* \) of the positive half of the loop algebras\(\widetilde{g1}(r),\widetilde{g1}(n)\). These maps are shown to give rise to the same invariant manifolds under Hamiltonian flow obtained through the Adler-Kostant-Symes theorem from the rings\(I(\widetilde{g1}(r)^* ),I(\widetilde{g1}(n)^* )\) of invariant functions. This gives a dual characterization of integrable Hamiltonian systems as isospectral flow in the two loop algebras.

AMS subject classification (1980)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, M. R., Harnad, J., and Hurtubise, J., Isospectral Hamiltonian flows in finite and infinite dimensions II. Integration of flows, to appear inComm. Math. Phys. Google Scholar
  2. 2.
    AdamsM. R., HarnadJ., and PreviatoE., Isospectral Hamiltonian flows in finite and infinite dimensions I. Generalized Moser systems and moment maps into loop algebras,Comm. Math. Phys. 117, 451–500 (1988).Google Scholar
  3. 3.
    AdlerM., On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-deVries type equations,Invent. Math. 50, 219–248 (1979).Google Scholar
  4. 4.
    AdlerM. and VanMoerbekeP., Completely integrable systems, Euclidean Lie algebras, and curves,Adv. in Math. 38, 267–317 (1980).Google Scholar
  5. 5.
    KostantB., The solution to a generalized Toda lattice and representation theory,Adv. in Math. 34, 195–338 (1979).Google Scholar
  6. 6.
    KricheverI. M., Methods of algebraic geometry in the theory of nonlinear equations,Russian Math. Surveys 32, 185–213 (1977).Google Scholar
  7. 7.
    ManakovS. V., Note on the integration of Euler's equations of the dynamics of ann-dimension rigid body,Func. Anal. Appl. 10, 328–329 (1976).Google Scholar
  8. 8.
    MischenkoA. S., Integral geodesics of a flow on Lie groups,Functional Anal. Appl. 4, 232–235 (1970).Google Scholar
  9. 9.
    MischenkoA. S. and FomenkoA. T., On the integration of the Euler equations on semisimple Lie algebras,Soviet Math. Dokl. 17, 1591–1593 (1976).Google Scholar
  10. 10.
    MoserJ., Geometry of quadrics and spectral theory,The Chern Symposium. Berkeley, June 1979, Springer Verlag, New York, Heidelberg, Berlin, 1980, pp. 147–188.Google Scholar
  11. 11.
    Ratiu, T., The Lie algebraic interpretation of the complete integrability of the Rosochatius system, inMathematical Methods in Hydrodynamics and Integrability in Dynamical Systems, AIP Conf. Proc. 88 (La Jolla, 1981).Google Scholar
  12. 12.
    RatiuT., The motion of the freen-dimensional rigid body,Indiana Univ. Math. J. 29, 609–629 (1980).Google Scholar
  13. 13.
    SymesW. W., Systems of Toda type, inverse spectral problems, and representation theory,Invent. Math. 59, 13–59 (1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • M. R. Adams
    • 1
  • J. Harnad
    • 2
    • 3
  • J. Hurtubise
    • 4
  1. 1.Department of MathematicsUniversity of GeorgiaAthensUSA
  2. 2.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada
  3. 3.Department of MathematicsConcordia UniversityMontréalCanada
  4. 4.Department of MathematicsMcGill UniversityMontréalCanada

Personalised recommendations