Letters in Mathematical Physics

, Volume 20, Issue 4, pp 261–270 | Cite as

An explicit one-soliton solution of the (2+1)-dimensional generalized sine-gordon equations

  • Nalini Joshi


The (n+1)-dimensional differential geometric generalization of the sine-Gordon equation (SGE) given by Tenenblat and Terng is solved explicitly in the casen=2 to obtain a one-soliton solution. The solution yields the soliton solution of the (1+1)-dimensional SGE in the limit as one of the three independent variables approaches infinity. However, more than one variable plays the role of time in these limits.

AMS subject classifications (1980)

35C05 35Q20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AblowitzM. J. and SegurH.,Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.Google Scholar
  2. 2.
    PerringJ. K. and SkyrmeT. H. R.,Nucl. Phys. 31, 550–555 (1962).Google Scholar
  3. 3.
    DerrickG. H.,J. Math. Phys. 5, 9 (1964).Google Scholar
  4. 4.
    EisenhartL. P.,A Treatise on the Differential Geometry of Curves and Surfaces, Ginn and Co., New York, 1909.Google Scholar
  5. 5.
    TenenblatK. and TerngC.-L.,Bull. Amer Math. Soc. (NS) 1, 589–593 (1979). Tenenblat, K. and Terng, C.-L.,Ann. of Math. 111, 477–490 (1980).Google Scholar
  6. 6.
    TerngC.-L.,Ann. of Math. 111, 491–510 (1980).Google Scholar
  7. 7.
    AblowitzM. J., BealsR., and TenenblatK.,Stud. Appl. Math. 74, 177–203 (1986).Google Scholar
  8. 8.
    LambG. L.Jr.,Elements of Soliton Theory, Wiley Interscience, New York, 1980.Google Scholar
  9. 9.
    GoldsteinH.,Classical Mechanics, 2nd edn., Addison-Wesley, Singapore, 1980.Google Scholar
  10. 10.
    EisenhartL. P.,The Theory of Continuous Groups, Dover, New York, 1963.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Nalini Joshi
    • 1
    • 2
  1. 1.Centre for Mathematical Analysis, School of Mathematical SciencesAustralian National UniversityCanberraAustralia
  2. 2.Department of Mathematics, School of Mathematical SciencesAustralian National UniversityCanberraAustralia

Personalised recommendations