Advertisement

Journal of Applied Electrochemistry

, Volume 14, Issue 5, pp 595–604 | Cite as

A flow-by packed-bed electrode for removal of metal ions from waste waters

  • Daniel Simonsson
Papers

Abstract

The design and performance of a full-scale, particulate flow-by electrode is described. The mass transfer rate in the electrode is high and can be estimated for different operating conditions by means of the correlation Sh=1.46Re0.72Sc1/3 The bed is effective for waste waters with a specific conductivity above 10−3 mho cm−1. Noble metals can be electrodeposited easily, even if bound in strong complexes, while deposition of zinc from acid solutions is highly pH-dependent.

The scale-up of a packed-bed electrochemical reactor for industrial applications is achieved by using a multi-bed cell based on the filter press principle with the appropriate number of bed electrodes.

Keywords

Zinc Physical Chemistry Waste Water Mass Transfer Acid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

a

specific surface area, m−1

C

concentration, kmol m−3

d

thickness of electrode, m

dp

particle diameter, m

D

diffusion coefficient, m2 s−1

F

Faraday constant, 96 487 A s mol−1

I

applied current, A

km

mass transfer coefficient, m s−1

L

bed height, m

q

flow rate, m3s−1

Re

Reynolds number,udpν−1

Sc

Schmidt number,νD−1

Sh

Sherwood number,kmdpD−1

u

liquid velocity, m s−1

U

cell voltage, V

z

charge of the electrodeposited metal ion

ε

void fraction of the bed

φ2

potential of pore electrolyte, V

Keff

effective conductivity, mho m−1

ν

kinematic viscosity, m2 s−1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Newman and W. Tiedemann,Adv. Electrochem. Electrochem. Eng. 11 (1978) 353.Google Scholar
  2. [2]
    P. S. Fedkiw,J. Electrochem. Soc. 128 (1981) 831.Google Scholar
  3. [3]
    J. M. Williams and M. C. Olson,AIChE Symposium Series 73 (1977) 119.Google Scholar
  4. [4]
    G. Kreysa,Chem. Ing. Tech. 50 (1978) 332.Google Scholar
  5. [5]
    G. Kreysa and C. Reynvaan,J. Appl. Electrochem. 12 (1982) 241.Google Scholar
  6. [6]
    G. M. Cook,Chem. Eng. 90 (1983) 59.Google Scholar
  7. [7]
    R. Alkire and P. K. Ng,J. Electrochem. Soc. 124 (1977) 1220.Google Scholar
  8. [8]
    G. B. Adams, R. P. Hollandsworth and D. N. Bennion,ibid. 122 (1975) 1043.Google Scholar
  9. [9]
    J. A. Trainham and J. Newman,J. Appl. Electrochem. 7 (1977) 287.Google Scholar
  10. [10]
    G. Kreysa,Chem. Ing. Tech. 55 (1983) 23.Google Scholar
  11. [11]
    ‘Handbook of Chemistry and Physics’, CRC Press Inc., 60th ed. 1979–80.Google Scholar
  12. [12]
    E. J. Wilson and C. J. Geankoplis,Ind. Eng. Chem. Fundam. 5 (1966) 9.Google Scholar
  13. [13]
    F. Coeuret,Electrochim. Acta 21 (1976) 185.Google Scholar
  14. [14]
    M. A. Enriquez-Granados, D. Hutin and A. Storck,ibid. 27 (1982) 303.Google Scholar
  15. [15]
    D. N. Bennion and J. Newman,J. Appl. Electrochem. 2 (1972) 113.Google Scholar
  16. [16]
    P. Hannaert,Ind. Chim. Beige 32 (1967) 223 (cited in V. A. Ettel, B. V. Tilak and A. S. Gendron,J. Electrochem. Soc. 121 (1974) 867).Google Scholar
  17. [17]
    ‘International Critical Tables of Numerical Data’, Vol V, McGraw-Hill, New York (1929).Google Scholar
  18. [18]
    J. Van Zee and J. Newman,J. Electrochem. Soc. 124 (1977) 706.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • Daniel Simonsson
    • 1
    • 2
  1. 1.Swedish National Development CompanyÅkersbergaSweden
  2. 2.Department of Chemical TechnologyThe Royal institute of TechnologyStockholmSweden

Personalised recommendations