Journal of Applied Electrochemistry

, Volume 14, Issue 5, pp 595–604 | Cite as

A flow-by packed-bed electrode for removal of metal ions from waste waters

  • Daniel Simonsson
Papers

Abstract

The design and performance of a full-scale, particulate flow-by electrode is described. The mass transfer rate in the electrode is high and can be estimated for different operating conditions by means of the correlation Sh=1.46Re0.72Sc1/3 The bed is effective for waste waters with a specific conductivity above 10−3 mho cm−1. Noble metals can be electrodeposited easily, even if bound in strong complexes, while deposition of zinc from acid solutions is highly pH-dependent.

The scale-up of a packed-bed electrochemical reactor for industrial applications is achieved by using a multi-bed cell based on the filter press principle with the appropriate number of bed electrodes.

Keywords

Zinc Physical Chemistry Waste Water Mass Transfer Acid Solution 

Nomenclature

a

specific surface area, m−1

C

concentration, kmol m−3

d

thickness of electrode, m

dp

particle diameter, m

D

diffusion coefficient, m2 s−1

F

Faraday constant, 96 487 A s mol−1

I

applied current, A

km

mass transfer coefficient, m s−1

L

bed height, m

q

flow rate, m3s−1

Re

Reynolds number,udpν−1

Sc

Schmidt number,νD−1

Sh

Sherwood number,kmdpD−1

u

liquid velocity, m s−1

U

cell voltage, V

z

charge of the electrodeposited metal ion

ε

void fraction of the bed

φ2

potential of pore electrolyte, V

Keff

effective conductivity, mho m−1

ν

kinematic viscosity, m2 s−1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Newman and W. Tiedemann,Adv. Electrochem. Electrochem. Eng. 11 (1978) 353.Google Scholar
  2. [2]
    P. S. Fedkiw,J. Electrochem. Soc. 128 (1981) 831.Google Scholar
  3. [3]
    J. M. Williams and M. C. Olson,AIChE Symposium Series 73 (1977) 119.Google Scholar
  4. [4]
    G. Kreysa,Chem. Ing. Tech. 50 (1978) 332.Google Scholar
  5. [5]
    G. Kreysa and C. Reynvaan,J. Appl. Electrochem. 12 (1982) 241.Google Scholar
  6. [6]
    G. M. Cook,Chem. Eng. 90 (1983) 59.Google Scholar
  7. [7]
    R. Alkire and P. K. Ng,J. Electrochem. Soc. 124 (1977) 1220.Google Scholar
  8. [8]
    G. B. Adams, R. P. Hollandsworth and D. N. Bennion,ibid. 122 (1975) 1043.Google Scholar
  9. [9]
    J. A. Trainham and J. Newman,J. Appl. Electrochem. 7 (1977) 287.Google Scholar
  10. [10]
    G. Kreysa,Chem. Ing. Tech. 55 (1983) 23.Google Scholar
  11. [11]
    ‘Handbook of Chemistry and Physics’, CRC Press Inc., 60th ed. 1979–80.Google Scholar
  12. [12]
    E. J. Wilson and C. J. Geankoplis,Ind. Eng. Chem. Fundam. 5 (1966) 9.Google Scholar
  13. [13]
    F. Coeuret,Electrochim. Acta 21 (1976) 185.Google Scholar
  14. [14]
    M. A. Enriquez-Granados, D. Hutin and A. Storck,ibid. 27 (1982) 303.Google Scholar
  15. [15]
    D. N. Bennion and J. Newman,J. Appl. Electrochem. 2 (1972) 113.Google Scholar
  16. [16]
    P. Hannaert,Ind. Chim. Beige 32 (1967) 223 (cited in V. A. Ettel, B. V. Tilak and A. S. Gendron,J. Electrochem. Soc. 121 (1974) 867).Google Scholar
  17. [17]
    ‘International Critical Tables of Numerical Data’, Vol V, McGraw-Hill, New York (1929).Google Scholar
  18. [18]
    J. Van Zee and J. Newman,J. Electrochem. Soc. 124 (1977) 706.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • Daniel Simonsson
    • 1
    • 2
  1. 1.Swedish National Development CompanyÅkersbergaSweden
  2. 2.Department of Chemical TechnologyThe Royal institute of TechnologyStockholmSweden

Personalised recommendations