Journal of Superconductivity

, Volume 6, Issue 4, pp 243–246 | Cite as

Flux-creep activation energies at the grain boundaries of Y-Ba-Cu-O superconductors in the characteristic frequency band

  • A. C. Bódi
  • I. Kirschner


Measurements on the temperature and frequency dependence of the complex ac susceptibility of sintered Y1.01Ba1.95Cu2.97O x are reported. The data are used to obtain the flux-creep activation energies at the grain boundaries in the characteristic frequency band. The found nonlinear frequency dependence of these energies can be approximated differently in the low, characteristic, and high frequency bands. The relaxation frequency of thermal fluctuation of the vortex lattice (2πΓ ∼ 3×104 Hz) and the surface current density (Js=0–10 A/cm2) have been estimated.

Key words

High-temperature superconductivity flux pinning flux motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson and Y. B. Kim,Rev. Mod. Phys. 36, 39 (1964).Google Scholar
  2. 2.
    M. P. A. Fisher,Phys. Rev. Lett. 62, 1415 (1988).Google Scholar
  3. 3.
    P. H. Kes, J. Aarts, J. van den Berg, and J. A. Mydosh,Supercond. Sci. Technol. 1, 242 (1989).Google Scholar
  4. 4.
    J. R. Clem,Physica C 153–155, 50 (1988).Google Scholar
  5. 5.
    C. W. Hagen, R. P. Griessen, and E. Salomons,Physica C 157, 199 (1989).Google Scholar
  6. 6.
    M. V. Feigel'man, V. B. Geshkenbein, and A. I. Larkin,Physica C 167, 177 (1990).Google Scholar
  7. 7.
    C. Mee, A. I. M. Rae, W. F. Vinen, and C. E. Gough,Phys. Rev. B 43, 2946 (1991).Google Scholar
  8. 8.
    G. Jakob, T. Hahn, C. Stölzel, C. Tomé-Rosa, and H. Adrian,Europhys. Lett. 19, 135 (1992).Google Scholar
  9. 9.
    F. Gömöry and P. Lobotka,Solid State Commun. 66, 645 (1988).Google Scholar
  10. 10.
    H. Küpfer, I. Apfelstedt, R. Flükiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech, and T. Wolf,Cryogenics 28, 650 (1988).Google Scholar
  11. 11.
    S. D. Murphy, K. Renouard, R. Crittenden, and S. M. Bhagat,Solid State Commun. 69, 367 (1989).Google Scholar
  12. 12.
    M. Nikolo and R. B. Goldfarb,Phys. Rev. B 39, 6615 (1989).Google Scholar
  13. 13.
    S. L. Shindé, J. Morril, D. Goland, D. A. Chance, and T. McGuire,Phys. Rev. B 41, 8838 (1990).Google Scholar
  14. 14.
    J. H. P. M. Emmen, V. A. M. Brabers, and W. J. M. de Jonge,Physica C 169, 418 (1990).Google Scholar
  15. 15.
    J. H. P. M. Emmen, V. A. M. Brabers, and W. J. M. de Jonge,Physica C 176, 137 (1991).Google Scholar
  16. 16.
    E. Babic', M. Prester, Đ. Drobac, Z. Mahronic', and N. Biškup,Phys. Rev. B 43, 1162 (1991).Google Scholar
  17. 17.
    N.-C. Yeh,Phys. Rev. B 43, 523 (1991).Google Scholar
  18. 18.
    I. Kirschner, A. C. Bódi, S. Leppävuori, A. Uusimäki, T. Dódony, and T. Porjesz,Phys. Lett. A 178, 315 (1993).Google Scholar
  19. 19.
    A. C. Bódi, I. Kirschner, and S. Leppävuori,Phys. Lett. A 158, 318 (1991).Google Scholar
  20. 20.
    T. T. Taylor,J. Res. Natl. Bur. Stand. B 64, 199 (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • A. C. Bódi
    • 1
  • I. Kirschner
    • 2
  1. 1.Institute of Experimental PhysicsKossuth UniversityDebrecenHungary
  2. 2.Department of Low-Temperature PhysicsEötvös UniversityBudapestHungary

Personalised recommendations