Pflügers Archiv

, Volume 334, Issue 3, pp 207–221 | Cite as

Rat proximal tubule D-glucose transport as a function of concentration, flow, and radius

  • D. Hare
  • H. Stolte


From earlier microperfusion studies ofD-glucose and water reabsorption in the proximal surface nephron of the rat,D-glucose was found to be removed by a saturable carrier and by an apparent coupling with net fluid reabsorption. Equations appropriate to describe this system were developed. They incorporated carrier-mediatedD-glucose transport, net water transport, and water-coupled solute transport. Water reabsorption was assumed to be constant either per unit surface area, or per unit volume of the nephron, and the rate of carrier-transportedD-glucose was assumed constant per unit length, per unit surface area, or per unit volume of the tubule. The possibility thatD-glucose could be reabsorbed via two carrier systems was also explored analytically. It was observed from this treatment that the fraction ofD-glucose reabsorbed would change if the perfusion rate was changed. With an increase in perfusion rate, a decrease in reabsorbed fraction was seen which indicates that if net fluid reabsorption is proportional to volume, carrier-mediated sugar transport is proportional to surface area or length of the tubule. From these relationshipsJ max, the maximal rate of carrier-transported sugar, was calculated to be 3.3×10−10M/cm2 sec, a value comparable to that reported from other laboratories. The results of this analysis are compatible with the data obtained both by micropuncture experiments during free flow and by glucose clearance studies until theT mG is reached. The possibility that theT mG obtained in clearance studies is due to a decrease in the fraction of fluid reabsorbed in the proximal tubule or to a second saturable carrier is discussed. It is observed that, in either case, if load is increased by increasing the glomerular filtration rate, noT mG would be reached, or stated another way, one would predict from the analysis thatT mG would be proportional to glomerular filtration rate.

Key words

D-Glucose Transport TmG Proximal Tubule Glomerular Tubular Balance 



distance from point of inflow


total length of tubule


radius of tubule atx


Iinear velocity atx

\(\dot V\)

flow rate atx


glucose concentration atx


radius at point of inflow

\(\dot V\)o

inflow rate


glucose concentration at point of inflow


reabsorption rate constant


constant with units of reciprocal length


apparent coupling coefficient


Michaelis constant


maximal rate of transport of solute by carrier system


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blythe, W. B., Gitelman, H. J., Welt, L. G.: Effect of expansion of the extracellular space on the rate of urinary excretion of calcium. Amer. J. Physiol.214, 52 (1968).PubMedGoogle Scholar
  2. 2.
    Burgen, A. S. V.: A theoretical treatment of glucose reabsorption in the kidney. Canad. J. Biochem.34, 466 (1956).PubMedGoogle Scholar
  3. 3.
    Deetjen, P., Boylan, J. W.: Glucose reabsorption in the rat kidney. Pflügers Arch. ges. Physiol.299, 19 (1968).CrossRefGoogle Scholar
  4. 4.
    Forster, R. P.: The nature of the glucose reabsorptive process in the frog renal tubule. Evidence for intermittency of glomerular function in the intact animal. J. cell. comp. Physiol.20, 55 (1942).CrossRefGoogle Scholar
  5. 5.
    Frohnert, P. P., Hohmann, B., Zwiebel, R., Baumann, K.: Free flow micropuncture studies of glucose transport in the rat nephron. Pflügers Arch.315, 66 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    Gertz, K. H.: Transtubuläre NaCl-Flüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol.276, 336 (1963).CrossRefGoogle Scholar
  7. 7.
    —, Mangos, J. A., Braun, G., Pagel, H. D.: On the glomerular tubular balance in the rat kidney. Pflügers Arch. ges. Physiol.285, 360 (1965).Google Scholar
  8. 8.
    Gottschalk, C. W., Lassiter, W. E.: A review of micropuncture studies of salt and water reabsorption in the mammalian nephron. Proc. 3rd Int. Cong. Nephrol., Washington, D. C.1, 99 (1966).Google Scholar
  9. 9.
    Howards, S. S., Davis, B. B., Knox, F. G., Wright, F. S., Berliner, R. W.: Depression of fractional sodium reabsorption by the proximal tubule of the dog without sodium diuresis. J. clin. Invest.47, 1561 (1968).PubMedGoogle Scholar
  10. 10.
    Loeschke, K., Baumann, K.: Kinetische Studien derD-Glucoseresorption im proximalen Konvolut der Rattenniere. Pflügers Arch.305, 139 (1969).PubMedCrossRefGoogle Scholar
  11. 11.
    ——, Renschler, H., Ullrich, K. J., Fuchs, G.: Differenzierung zwischen aktiver und passiver Komponente desD-Glucosetransports am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118 (1969).PubMedCrossRefGoogle Scholar
  12. 12.
    McPhaul, J. J., Simonaitis, J. J.: Observations on the mechanisms of glucosuria during glucose loads in normal and nondiabetic subjects. J. clin. Invest.47, 702 (1968).PubMedGoogle Scholar
  13. 13.
    Rector, F. C., Jr., Brunner, F. P., Seldin, D. W.: Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated ureteropelvic pressure on glomerular filtration rate, fractional reabsorption, transit time, and tubular size in the proximal tubule of the rat. J. clin. Invest.45, 590 (1966).PubMedCrossRefGoogle Scholar
  14. 14.
    Robson, A. M., Srivastava, P. L., Bricker, N. S.: The influence of saline loading on renal glucose reabsorption in the rat. J. clin. Invest.47, 329 (1968).PubMedGoogle Scholar
  15. 15.
    Rohde, R., Deetjen, P.: Die Glucoseresorption in der Rattenniere. Mikropunktionsanalysen der tubularen Glucosekonzentration bei freiem Fluß. Pflügers Arch.302, 219 (1968).PubMedCrossRefGoogle Scholar
  16. 16.
    Shannon, J. A., Farber, S., Troast, L.: The measurement of glucose Tm in the normal dog. Amer. J. Physiol.133, 752 (1941).Google Scholar
  17. 17.
    —, Fisher, S.: The renal tubular reabsorption of glucose in the normal dog. Amer. J. Physiol.122, 765 (1938).Google Scholar
  18. 18.
    Sonnenberg, H., Oelert, H., Baumann, K.: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol.286, 171 (1965).CrossRefGoogle Scholar
  19. 19.
    Stolte, H., Brecht, J. P., Wiederholt, M., Hierholzer, K.: Einfluß von Adrenalektomie und Glucocorticoiden auf die Wasserpermeabilität corticaler Nephronabschnitte der Rattenniere. Pflügers Arch. ges. Physiol.299, 99 (1968).CrossRefGoogle Scholar
  20. 20.
    Stolte, H., Hare, D.: Untersuchungen über die Beziehung zwischen renaler Glukose- und Flüssigkeitsresorption. Symposium Ges. für Nephrologie, Tübingen 1970.Google Scholar
  21. 21.
    ——, Boylan, J. W.:D-glucose and fluid reabsorption in proximal surface tubule of the rat kidney. Pflügers Arch.334, 193 (1972).PubMedGoogle Scholar
  22. 22.
    Suki, W. H., Martinez-Maldonado, M., Rouse, D., Terry, A.: Effect of expansion of extracellular fluid volume on renal phosphate handling. J. clin. Invest.48, 1888 (1969).PubMedGoogle Scholar
  23. 23.
    Van Liew, J. B., Deetjen, P., Boylan, J. W.: Glucose reabsorption in the rat kidney; dependence on glomerular filtration. Pflügers Arch. ges. Physiol.295, 232 (1967).CrossRefGoogle Scholar
  24. 24.
    Walser, M.: Mathematical aspects of renal function: The dependence of solute reabsorption on water reabsorption, and the mechanism of osmotic natriuresis. J. theor. Biol.10, 307 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    Watson, J. F.: Effect of saline loading on sodium reabsorption in the dog proximal tubule. Amer. J. Physiol.210, 781 (1966).PubMedGoogle Scholar
  26. 26.
    Wilbrandt, W., Rosenberg, T.: The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev.13, 109 (1961).PubMedGoogle Scholar
  27. 27.
    Woolf, L. I., Goodwin, B. L., Phelps, C. E.: Tm-limited renal tubular reabsorption and the genetics of renal glucosuria. J. theor. Biol.11, 10 (1966).PubMedCrossRefGoogle Scholar
  28. 28.
    Young, J. A., Freedman, B. S.: Renal tubular transport of amino acids. Clin. Chem.17, 245 (1971).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • D. Hare
    • 1
    • 2
    • 3
  • H. Stolte
    • 1
    • 2
    • 3
  1. 1.Departments of Biophysics, Medicine, and PhysiologyState University of New York at BuffaloBuffalo
  2. 2.Departments of MedicineJohann Gutenberg Universität MainzMainzGermany
  3. 3.Medizinische HochschuleHannoverGermany

Personalised recommendations