Optical and Quantum Electronics

, Volume 24, Issue 2, pp S245–S272 | Cite as

Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities

  • H. Yokoyama
  • K. Nishi
  • T. Anan
  • Y. Nambu
  • S. D. Brorson
  • E. P. Ippen
  • M. Suzuki


We describe the alteration of spontaneous emission of materials in optical microcavities having dimensions on the order of the emitted wavelength. Particular attention is paid to one-dimensional optical confinement structures with pairs of planar reflectors (planar microcavities). The presence of the cavity causes great modifications in the emission spectrum and spatial emission intensity distribution accompanied by changes in the spontaneous emission lifetime. Experimental results are shown for planar microcavities containing GaAs quantum wells or organic dye-embedded Langmuir-Brodgett films as light emitting layers. Also discussed are the laser oscillation properties of microcavities. A remarkable increase in the spontaneous emission coupling into the laser oscillation mode is expected in microcavity lasers. A rate equation analysis shows that increasing the coupling of spontaneous emission into the cavity mode causes the disappearance of the lasing threshold in the input-output curve. Experimentally verification is presented using planar optical microcavities confining an organic dye solution. The coupling ratio of spontaneous emission into a laser mode increases to be as large as 0.2 for a cavity having a half wavelength distance between a pair of mirrors. At this point, the threshold becomes quite fuzzy. Differences between the spontaneous emission dominant regime and the stimulated emission dominant regime are examined with emission spectra and emission lifetime analyses.


GaAs Spontaneous Emission Laser Oscillation Coupling Ratio Emission Lifetime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. M. Purcell,Phys. Rev. 69 (1946) 681.Google Scholar
  2. 2.
    D. Kleppner,ibid. 47 (1981) 233.Google Scholar
  3. 3.
    A. G. Vaidyanathan, W. P. Spencer andD. Kleppner,ibid. 47 (1981) 1592.Google Scholar
  4. 4.
    P. Goy, J. M. Raimond, M. Gross andS. Haroche,ibid. 50 (1983) 1903.Google Scholar
  5. 5.
    D. Meschede, H. Walther andG. Müller,ibid. 54 (1985) 551.Google Scholar
  6. 6.
    G. Rempe andH. Walther,ibid. 58 (1987) 353.Google Scholar
  7. 7.
    W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi andS. Haroche,ibid. 58 (1987) 666.Google Scholar
  8. 8.
    D. J. Heinzen, J. J. Childs, J. E. Thomas andM. S. Feld,ibid. 58 (1987) 1320.Google Scholar
  9. 9.
    D. J. Heinzen andM. S. Feld,ibid. 59 (1987) 2623.Google Scholar
  10. 10.
    K. H. Drexhage, in ‘Progress in Optics’, edited by E. Wolf (North Holland, Amsterdam, 1974), Vol. XII, p. 165.Google Scholar
  11. 11.
    F. DeMartini, G. Innocenti, G. R. Jacobovits andP. Mataloni,Phys. Rev. Lett. 59 (1987) 2995.Google Scholar
  12. 12.
    M. Suzuki, H. Yokoyama, S. D. Brorson andE. P. Ippen,Appl. Phys. Lett. 58 (1991) 998.Google Scholar
  13. 13.
    E. Yablonovitch, T. J. Gmitter andR. Bhat,Phys. Rev. Lett. 61 (1986) 2546.Google Scholar
  14. 14.
    H. Yokoyama, K. Nishi, T. Anan andH. Yamada, ‘Tech. Digest of Topical Meeting on Quantum Wells for Optics and Optoelectronics’, Salt Lake City, March 1989, paper MD4,H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson andE. P. Ippen,Appl. Phys. Lett. 57 (1990) 2814.Google Scholar
  15. 15.
    Y. Yamamoto, S. Machida, K. Igeta andY. Horikoshi, ‘Tech. Digest of 6th Rochester Conference on Coherence and Quantum Optics’, Rochester, June 1989.Google Scholar
  16. 16.
    T. Kobayashi, T. Segawa, A. Morimoto andT. Sueta, ‘Tech. Digest of 43th Fall Meeting of Japanese Applied Physics Society’, paper 29a-B-6 (Sep. 1982);T. Kobayashi, A. Morimoto andT. Sueta, ‘Tech. Digest of 46th Fall Meeting of Japanese Applied Physics Society’, paper 4a-N-1 (Oct. 1985) (both in Japanese).Google Scholar
  17. 17.
    E. Yablonovitch,Phys. Rev. Lett. 58 (1987) 2059.Google Scholar
  18. 18.
    H. Yokoyama andS. D. Brorson,J. Appl. Phys. 66 (1989) 4801.Google Scholar
  19. 19.
    S. D. Brorson, H. Yokoyama andE. P. Ippen,IEEE J. Quantum Electron. 26 (1990) 1492.Google Scholar
  20. 20.
    H. Yokoyama, M. Suzuki andY. Nambu,Appl. Phys. Lett. 58 (1991) 2598.Google Scholar
  21. 21.
    H. Soda, K. Iga, C. Kitahara andY. Suematsu,Jpn. J. Appl. Phys. 18 (1979) 2329.Google Scholar
  22. 22.
    F. Koyama, S. Kinoshita andK. Iga,Trans. IECE Jpn.,E71 (1988) 1089.Google Scholar
  23. 23.
    J. L. Jewell, S. L. McCall, Y. H. Lee, A. Schere, A. C. Gossard andJ. H. English,Appl. Phys. Lett. 54 (1989) 1400.Google Scholar
  24. 24.
    A. Schere, J. L. Jewell, Y. H. Lee, J. P. Habrison andL. T. Florez,ibid. 55 (1989) 2724.Google Scholar
  25. 25.
    R. S. Geels andL. A. Coldren,ibid. 57 (1990) 1605.Google Scholar
  26. 26.
    P. W. Milonni andP. L. Knight,Opt. Commun. 9 (1973) 119.Google Scholar
  27. 27.
    P. Stehle,Phys. Rev. A2 (1970) 102.Google Scholar
  28. 28.
    M. R. Philopott,Chemi. Phys. Lett. 19 (1973) 435.Google Scholar
  29. 29.
    X. P. Feng,Optics Commun. 83 (1991) 162.Google Scholar
  30. 30.
    G. Björk, S. Machida, Y. Yamamoto andK. Igeta,Phys. Rev. A. 44 (1991) 669.Google Scholar
  31. 31.
    T. Baba, T. Hamano, F. Koyama andK. Iga,IEEE J. Quantum Electron. 27 (1991) 1347.Google Scholar
  32. 32.
    Y. Nambu andH. Yokoyama, unpublished.Google Scholar
  33. 33.
    K. Ujihara,Jpn. J. Appl. Phys. 30 (1991) L901.Google Scholar
  34. 34.
    F. DeMartini andJ. R. Jacobovitz,Phys. Rev. Lett. 60 (1988) 1711.Google Scholar
  35. 35.
    Y. Nambu andH Yokoyama, ‘Tech. Digest of 1991 Quantum Electronics and Laser Science Conference’, Baltimore, May 1991, paper JThB1.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • H. Yokoyama
    • 1
  • K. Nishi
    • 1
  • T. Anan
    • 1
  • Y. Nambu
    • 1
  • S. D. Brorson
    • 2
  • E. P. Ippen
    • 2
  • M. Suzuki
    • 3
  1. 1.Opto-Electronics Research LaboratoriesNEC CorporationTsukubaJapan
  2. 2.Department of Electrical Engineering and Computer Science and Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Functional Devices Research LaboratoriesNEC Corporation 4-1-1 MiyazakiKawasakiJapan

Personalised recommendations