Skip to main content
Log in

A modelling approach to the optimizaton of lead-acid battery electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A resistive grid model was used to study the current and ohmic overpotential distributions along the surface of lead-acid battery electrodes. Analyses were made under two different regimes: the initial behaviour at high current densities and the response with time at low current densities. At high discharge currents the theoretical results show that the geometry of the electrodes and the position of the lug play the most important role in controlling the magnitude of ohmic losses. The best geometry is a square grid with the lug positioned at the upper centre of the electrode. At low discharge currents the model was used to follow the current distribution along the electrode surface as a function of time. In this last study the appearance, for long discharge times, of short-circuited concentration microcells localized in certain regions of the electrode surface was noted. The other regions of the electrode supply the external discharge current and the excess current necessary to charge the internal microcell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. S. Newman and C. W. Tobias,J. Electrochem. Soc. 109 (1962) 1183.

    Google Scholar 

  2. J. S. Dunning, D. N. Bennion and J. S. Newman,ibid. 118 (1971) 1251.

    Google Scholar 

  3. D. Simonsson,ibid. 120 (1973) 151.

    Google Scholar 

  4. D. Simonsson,J. Appl. Electrochem. 3 (1973) 261.

    Google Scholar 

  5. Idem, ibid 4 (1974) 109.

    Google Scholar 

  6. K. Micka and I. Rousar,Electrochim. Acta 18 (1973) 629.

    Google Scholar 

  7. Idem and I. Rousar,ibid,19 (1974) 499.

    Google Scholar 

  8. Idem and I. Rousar,Coll. Czechoslovak Chem. Comm. 40 (1975) 921.

    Google Scholar 

  9. Idem and I. Rousar,Electrochim. Acta 21 (1976) 599.

    Google Scholar 

  10. J. Newman and J. Tiedemann,AIChE J. 21 (1976) 25.

    Google Scholar 

  11. W. H. Tiedeman and J. Newman, in ‘Battery Design and Optimization’, (edited by S. Gross), The Electrochemical Society Proceedings Series, Princeton, NJ (1979) p. 23.

  12. W. S. Sunu, in ‘Electrochemical Cell Design’, (edited by R. E. White), Plenum Press, New York (1984) p. 357.

    Google Scholar 

  13. H. Gu, T. V. Nguyen and R. E. White,J. Electrochem. Soc. 134 (1987) 2953.

    Google Scholar 

  14. E. C. Dimpault-Darcy, T. V. Nguyen and R. E. White,ibid. 135 (1988) 278.

    Google Scholar 

  15. P. Ekdunge and D. Simonsson,J. Appl. Electrochem. 19 (1989) 136.

    Google Scholar 

  16. W. Tiedeman, J. Newman and F. DeSus, in ‘Power Sources 6’, (edited by D. H. Collins), Academic Press, New York (1977).

    Google Scholar 

  17. L. E. Vaaler,J. Appl. Electrochem. 9 (1979) 21.

    Google Scholar 

  18. W. H. Tiedeman and J. Newman,op. cit. [11], p. 39.

  19. W. G. Sunu and B. W. Burrows,J. Electrochem. Soc. 129 (1982) 688.

    Google Scholar 

  20. L. E. Vaaler, E. W. Brooman and H. A. Fugitti,J. Appl. Electrochem. 12 (1982) 721.

    Google Scholar 

  21. H. Gu,J. Electrochem. Soc. 130 (1983) 1459.

    Google Scholar 

  22. W. G. Sunu and B. W. Burrows,ibid. 131 (1984) 1.

    Google Scholar 

  23. Y. Morimoto, Y. Ohya, K. Abe, T. Yoshida and H. Morimoto,ibid. 135 (1988) 293.

    Google Scholar 

  24. H. Gu,J. Appl. Electrochem. 19 (1989) 505.

    Google Scholar 

  25. B. Carnahan, H. A. Luther and J.O. Wilkes, ‘Applied Numerical Methods’, John Wiley & Sons, New York (1969).

    Google Scholar 

  26. M. J. D. Powell, in ‘Numerical Methods for Nonlinear Equations’, (edited by P. Rabinowitz), Gordon and Breach Science Publishers, London (1970) p. 87.

    Google Scholar 

  27. C. G. Broyden,Math. Computation 21 (1967) 368.

    Google Scholar 

  28. S. U. Falk and A. J. Salkind, in ‘Alkaline Storage Batteries’, John Wiley & Sons, New York (1969) p. 253.

    Google Scholar 

  29. W. G. Sunu and B. W. Burrows,J. Electrochem. Soc. 128 (1981) 1405.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maia, G., Ticianelli, E.A. & Gonzalez, E.R. A modelling approach to the optimizaton of lead-acid battery electrodes. J Appl Electrochem 23, 1151–1161 (1993). https://doi.org/10.1007/BF00625589

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00625589

Keywords

Navigation