Skip to main content
Log in

Quantum well shape modification using vacancy generation and rapid thermal annealing

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The effect of rapid thermal annealing (RTA) on the shapes of GaAs/AlGaAs quantum wells (QWs) has been investigated by monitoring exciton energies using low temperature photoluminescence and photoluminescence excitation spectroscopies. After RTA, large changes in exciton energies were observed only in regions of the samples in which excess surface vacancies were generated, either by capping with a thin layer of SiO2 or by low-energy ion implantation. These changes were interpreted as resulting from modifications of the shapes of the as-grown QWs from abrupt or square to gradual (rounded) due to enhanced interdiffusion of well/barrier atoms. For single QWs there was an increase in exciton energy whose magnitude depended on the width of the well, its distance from the surface of the wafer, the annealing temperature and the total number of surface vacancies available. From studies of coupled QWs, there was clear evidence of asymmetry in the heterostructure after RTA. Although both techniques of vacancy generation yield substantial QW shape modifications, the ion implantation technique has the advantages of being highly reproducible and of being compatible with any material system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Kirillov, J. L. Merz, P. D. Dapkus andJ. J. Coleman,J. Appl. Phys. 55 (1984) 1105.

    Google Scholar 

  2. J. E. Epler, R. D. Burnham, R. L. Thornton, T. L. Paoli andM. C. Bashaw,Appl. Phys. Lett. 49 (1986) 1447.

    Google Scholar 

  3. J. Ralston, A. L. Moretti, R. K. Jain andF. A. Chambers,ibid. 50 (1987) 1817.

    Google Scholar 

  4. W. D. Laidig, N. Holonyak, Jr, M. D. Camras, K. Hess, J. J. Coleman, P. D. Dapkus andJ. Bardeen,ibid. 38 (1981) 776.

    Google Scholar 

  5. M. D. Camras, N. Holonyak, Jr, K. Hess, M. J. Ludowise, W. T. Dietze andC. R. Lewis,ibid. 42 (1983) 185.

    Google Scholar 

  6. K. Meehan, N. Holonyak, Jr, J. M. Brown, M. A. Nixon, P. Gavrilovic andR. D. Burnham,ibid. 45 (1984) 549.

    Google Scholar 

  7. D. G. Deppe, L. J. Guido, N. Holonyak, Jr, K. C. Hsieh, R. D. Burnham, R. L. Thornton andT. L. Paoli,ibid. 49 (1986) 510.

    Google Scholar 

  8. J. D. Ralston, S. O'Brien, G. W. Wicks andL. F. Eastman,ibid. 52 (1988) 1151.

    Google Scholar 

  9. E. S. Koteles, B. Elman, R. P. Holmstrom, P. Melman, J. Y. Chi, Xin Wen, J. Powers andD. Owens,Superlatt. Microstruct. 5 (1989) 321.

    Google Scholar 

  10. P. Gavrilovic, D. G. Deppe, K. Meehan, N. Holonyak, Jr andJ. J. Coleman,ibid. 47 (1985) 130.

    Google Scholar 

  11. Y. Hirayama, Y. Suzuki andH. Okamoto,Jpn. J. Appl. Phys. 24 (1985) 1498.

    Google Scholar 

  12. J. Cibert, P. M. Petroff, D. J. Werder, S. J. Pearton, A. C. Gossard andJ. H. English,Appl. Phys. Lett. 49 (1986) 223.

    Google Scholar 

  13. P. Mei, T. Venkatesan, S. A. Schwartz, N. G. Stoffel, J. P. Harbison, D. L. Hart andL. A. Florez,ibid. 52 (1988) 1487.

    Google Scholar 

  14. S. T. Lee, G. Braunstein, P. Fellinger, K. B. Kahen andG. Rajeswaran,ibid. 53 (1988) 2531.

    Google Scholar 

  15. C. A. Armiento andF. Prince,ibid. 48 (1986) 1623.

    Google Scholar 

  16. J. Gyulai, J. W. Mayer, I. V. Mitchell andV. Rodriguez,ibid. 17 (1970) 332.

    Google Scholar 

  17. J. Y. Chi, X. Wen, E. S. Koteles andB. Elman,ibid. 55 (1989) 855.

    Google Scholar 

  18. Y. J. Chen, E. S. Koteles, B. S. Elman andC. A. Armiento,Phys. Rev. B38 (1987) 4562.

    Google Scholar 

  19. E. S. Koteles, B. Elman, C. A. Armiento, P. Melman, J. Y. Chi, R. J. Holmstrom, S. Charbonneau andM. L. W. Thewalt,J. Appl. Phys. 66 (1989) 5532.

    Google Scholar 

  20. B. Elman, E. S. Koteles, P. Melman andC. A. Armiento,ibid. 66 (1989) 2104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koteles, E.S., Elman, B., Melman, P. et al. Quantum well shape modification using vacancy generation and rapid thermal annealing. Opt Quant Electron 23, S779–S787 (1991). https://doi.org/10.1007/BF00624969

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00624969

Keywords

Navigation