Optical and Quantum Electronics

, Volume 8, Issue 5, pp 383–391 | Cite as

Theory of the double heterostructure laser: III. Self-consistent calculations of the electrical and optical characteristics

  • K. A. Shore
  • M. J. Adams
Papers

Abstract

Self-consistent calculations of the electrical and optical properties of the double-heterostructure laser have been made. Theoretical studies of both aspects of the device performance have been utilized in this work which describes the behaviour of the laser both below and at threshold. The interdependence of the electrical and optical properties of the device has been established and incorporated into a self-consistency scheme.

A computer program has been developed to perform the calculations given the specification of device parameters. Within the program the transport equations are solved, the active region refractive index calculated and then used in the waveguide theory. From the solution to the waveguide equations a lasing frequency and threshold current for the specified cavity mode are obtained. A consistency criterion is applied between the transport and waveguide parts of the theory.

The program allows the performance of the laser to be monitored providing such information asI–V characteristics, near and far field patterns for various cavity modes with their threshold currents and lasing frequencies.

Keywords

Refractive Index Optical Property Transport Equation Versus Characteristic Optical Characteristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Shore andM. J. Adams,Opt. Quant. Elect. 8 (1976), 269–278.Google Scholar
  2. 2.
    K. A. Shore andM. J. Adams,Opt. Quant. Elect. 8 (1976), 000–000.Google Scholar
  3. 3.
    H. Yonezu, K. Kobayashi andI. Sakuma,Jap. J. App. Phys. 12 (1973), 1593–1599.Google Scholar
  4. 4.
    E. Pinkas, B. I. Miller, I. Hayashi andP. W. Foy,J. Appl. Phys. 43 (1972), 2827–2835.Google Scholar
  5. 5.
    H. C. Casey Jnr., M. B. Panish andJ. L. Merz,J. App. Phys. 44 (1973), 5470–5475.Google Scholar
  6. 6.
    L. Lewin,J. App. Phys. 46 (1975), 2323–2326.Google Scholar
  7. 7.
    H. C. Casey Jnr., M. B. Panish, W. O. Schlosser andT. L. Paoli,J. App. Phys. 45 (1974), 323–333.Google Scholar
  8. 8.
    H. Kressel, J. K. Butler, F. Z. Hawrylo, H. F. Lockwood andM. Ettenberg,R.C.A. Review 32 (1971), 393–401.Google Scholar
  9. 9.
    D. L. Rode andL. R. Dawson,App. Phys. Letts. 21 (1972), 90–93.Google Scholar
  10. 10.
    J. F. Womac andR. H. Rediker,J. App. Phys. 43 (1972), 4129–4133.Google Scholar
  11. 11.
    K. A. Shore andM. J. Adams,Appl. Phys. 9 (1976), 161–164.Google Scholar
  12. 12.
    D. T. Cheung, S. Y. Chiang, andG. L. Pearson,Solid State Electronics 18 (1975), 263–266.Google Scholar
  13. 13.
    D. T. Cheung, C. C. Shen andG. L. Pearson,J. Appl. Phys. 46 (1975), 5226–5228.Google Scholar

Copyright information

© Chapman and Hall Ltd 1976

Authors and Affiliations

  • K. A. Shore
    • 1
  • M. J. Adams
    • 2
  1. 1.Department of Applied Mathematics and AstronomyUniversity CollegeCardiffUK
  2. 2.Department of ElectronicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations