Optical and Quantum Electronics

, Volume 11, Issue 2, pp 185–196 | Cite as

Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles

  • K. I. White
Papers

Abstract

Both the theoretical basis and experimental realization of the refracted near-field technique for the direct measurement of optical fibre profiles are presented. The technique requires minimal sample preparation, no computation and is applicable to both single and multimode fibres. Both the core and the cladding are profiled. After outlining the problems associated with other techniques, the use of this method for the measurement of fibre profile, numerical aperture and geometry is discussed. Leaky mode rejection and resolution are treated in detail. A fitting procedure for determining theα-value of a profile is given. The experimental apparatus is fully discussed. Results are presented to illustrate both the applicability of the technique to single and multimode fibres and also the rejection of leaky modes. The experimental sensitivity is shown sufficient to reveal an index fluctuation having a wavelength < 1μm and an amplitude of < 0.0001.

Keywords

Refractive Index Sample Preparation Direct Measurement Optical Fibre Theoretical Basis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Gloge andE. A. J. Marcatili,Bell Syst. Tech. J. 52 (1973) 1563–78.Google Scholar
  2. 2.
    T. Okoshi,Proceedings of Conference on Integrated Optics and Optical Communication (C2.1) (Japan, 1977).Google Scholar
  3. 3.
    W. E. Martin,Appl. Opt. 13 (1974) 2112–16.Google Scholar
  4. 4.
    H. M. Presby, W. Mammel andR. M. Derosier,Rev. Sci. Instrum. 47 (1976) 348–52.Google Scholar
  5. 5.
    M. E. Marhic, P. S. Ho andM. Epstein,Appl. Phys. Lett. 26 (1975) 574–75.Google Scholar
  6. 6.
    M. J. Saunders andW. B. Gardner,Appl. Opt. 16 (1977) 2368–71.Google Scholar
  7. 7.
    F. T. Stone,Appl. Opt. 16 (1977) 2738–42.Google Scholar
  8. 8.
    W. Eickhoff andE. Weidal,Opt. Quant. Elect. 7 (1975) 109–13.Google Scholar
  9. 9.
    M. Ikeda, M. Tateda andH. Yoshikiyo,Appl. Opt. 14 (1975) 814–16.Google Scholar
  10. 10.
    T. Okoshi andK. Hotate,Appl. Opt. 15 (1976) 2756–64.Google Scholar
  11. 11.
    K. Hotate andT. Okoshi,Proceedings of Conference on Integrated Optics and Optical Communication, (C2.3) (Japan, 1977).Google Scholar
  12. 12.
    F. Brinkmeyer,Appl. Opt. 15 (1977) 2802–03.Google Scholar
  13. 13.
    F. M. E. Sladen, D. N. Payne andM. J. Adams,Appl. Phys. Lett. 28 (1976) 255–58.Google Scholar
  14. 14.
    G. T. Sumner,Opt. Quant. Elect. 9 (1977) 79–82.Google Scholar
  15. 15.
    J. A. Arnaud andR. M. Derosier,Bell Syst. Tech J. 55 (1976) 1489–1508.Google Scholar
  16. 16.
    M. J. Adams, D. N. Payne andF. M. E. Sladen,Elect. Lett. 12 (1976) 281–83.Google Scholar
  17. 17.
    P. Hazan,Elect. Lett. 14 (1978) 158–60.Google Scholar
  18. 18.
    R. Olshansky,Appl. Opt. 15 (1976) 782–88.Google Scholar
  19. 19.
    W. J. Stewart,Elect. Lett. 11 (1975) 516–18.Google Scholar
  20. 20.
    W. J. Stewartm Proceedings of the Conference on Integrated Optics and Optical Communication (C2.2) (Japan, 1977).Google Scholar
  21. 21.
    M. J. Adams, D. N. Payne andF. M. E. Sladen,Elect. Lett. 11 (1975) 238–40.Google Scholar
  22. 22.
    M. Born andE. Wolf, ‘Principles of Optics’ (Pergamon Press, Oxford, 1975) p. 416.Google Scholar
  23. 23.
    B. P. Nelson, private communication.Google Scholar
  24. 24.
    K. Petermann,Arch. Elecktron and Uebertragungstech 31 (1977) 201–04.Google Scholar
  25. 25.
    R. Olshansky,Appl. Opt. 15 (1976) 2773–77.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • K. I. White
    • 1
  1. 1.Post Office Research CentreMartlesham HeathIpswichUK

Personalised recommendations