Optical and Quantum Electronics

, Volume 9, Issue 1, pp 15–32 | Cite as

Optical waveguiding in semiconductor injection lasers and integrated optics

  • S. J. Chua
  • Ben Thomas


Weak perturbations from various refractive index distributions have been introduced into the central layer of the three layered dielectric slab optical waveguide model and solutions of the wave equation in this guide for TE modes have been compared with the results published for the unperturbed mode. The perturbations in general introduce quadrature components in the transverse modes and a mode width dependent amplitude. The mode position within the guide can be shifted and the mode width increased or decreased. With increasing parabolic perturbation there is increasing waveguide discrimination against higher order modes.


Optical Waveguide Transverse Mode High Order Mode Mode Width Mode Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thomas H. Zachos andJose E. Ripper,IEEE J. Quant. Electron.,QE-5 (1969) 29–37.Google Scholar
  2. 2.
    J. C. Dyment,Appl. Phys. Lett. 10 (1967) 84–6.Google Scholar
  3. 3.
    G. H. B. Thompson,Opto-Electronics,4 (1972) 257–310.Google Scholar
  4. 4.
    M. R. Matthews, R. B. Dyott andW. P. Carling,Elect. Lett. 8 (1972) 570–2.Google Scholar
  5. 5.
    M. J. Adams andM. Cross,Solid State Electronics 14 (1971) 865–83.Google Scholar
  6. 6.
    Edward F. Kuester andDavid C. Chang,IEEE Trans. MTT 23 (1975) 98–106.Google Scholar
  7. 7.
    A. L. McWhorter,Solid State Electronics 6 (1963) 417–23.Google Scholar
  8. 8.
    W. W. Anderson,IEEE. J. Quant. Electron. QE-1 (1965) 228–36.Google Scholar
  9. 9.
    D. Marcuse,ibid QE-9 (1973) 1000–6.Google Scholar
  10. 10.
    D. Marcuse,IEEE Trans. MTT 18 (1970) 62–3.Google Scholar
  11. 11.
    A. Kumar, K. Thyagarajan andA. K. Ghatak,IEEE J. Quant. Electron. QE-10 (1974) 902–4.Google Scholar
  12. 12.
    Zh. I. Alferov, V. M. Anoreev, F. A. Gimmel'farb, L. M. Dolginov, Yu. A. Zhitkov, L. D. Libov, E. L. Portnoi, V. G. Trofim, M. K. Trukan andE. G. Shevchenko,Soviet Phys. Semi cond. 4 (1971) 1457–62.Google Scholar
  13. 13.
    H. Nakashima, N. Chinone, Y. Taguchi andO. Nakada,J. Appl. Phys. 44 (1973) 2688–9.Google Scholar
  14. 14.
    B. Thomas, M. J. Adams andS. Gründorfer,IEEE J. Quant. Electron. QE-11 (1975) 528–32.Google Scholar
  15. 15.
    F. K. Reinhart, I. Hayashi andM. B. Panish,J. Appl. Phys. 42 (1971) 4466–79.Google Scholar
  16. 16.
    F. R. Nash,J. Appl. Phys. 44 (1973) 4696–707.Google Scholar
  17. 17.
    H. Koegelnik, ‘Integrated optics’, Ed. byK. Tamir (Springer-Verlag, Berlin, 1975) Ch. 9.Google Scholar
  18. 18.
    A. Shore andM. J. Adams,Opt. Quant. Elect. 8 (1976) 373–381.Google Scholar
  19. 19.
    E. Jahnke, F. Emde andLösch, ‘Tables of Higher Functions’, McGraw-Hill (New York) (1960) pp. 101–4.Google Scholar
  20. 20.
    A. L. Loeb, ‘Introduction to Wave Mechanics’, (McGraw-Hill, New York, 1900) Ch. 9.Google Scholar
  21. 21.
    H. C. Casey Jr., M. B. Panish, W. O. Schlosser andT. L. Paoli,J. Appl. Phys. 45 (1974) 322–33.Google Scholar

Copyright information

© Chapman and Hall Ltd 1977

Authors and Affiliations

  • S. J. Chua
    • 1
  • Ben Thomas
    • 1
  1. 1.Department of Applied Physics and ElectronicsUWISTCardiff

Personalised recommendations