Transition Metal Chemistry

, Volume 10, Issue 2, pp 54–56 | Cite as

Molybdenum complexes of biochemical iinterest. New coordination complexes of oxomolybdenum(V) with the tridentate ONO donor schiff bases derived from salicylaldehydes and ethanolamine

  • Arun Syamal
  • M. A. Bari Niazi
Full Papers

Summary

New oxomolybdenum(V) complexes MoOCIL (where LH2 = Schiff base) derived from ethanolamine and salicylaldehyde, 5-chlorosalicylaldehyde, 5-bromosalicylaldehyde, 5-nitrosalicylaldehyde, 3-ethoxysalicylaldehyde and 2-hydroxy-1-naphthaldehyde have been synthesized and characterised by elemental analyses, conductance, molecular weight, i.r. and electronic spectra and magnetic measurements. The Schiff bases behave as dibasic tridentate ONO donor ligands. The complexes are non-electrolytes and dimers. The complexes exhibit subnormal magnetic moments and are involved in antiferromagnetic exchange withS=0 ground state. The complexes exhibit electronic spectral bands atca. 13000 andca. 17000 cm−1 due to the transitionsdxydxz,yz (2B22E) anddxydx2−y2 (2B22B1), respectively. The ν(Mo=O) frequency of the complexes is observed in the 900–970 cm−1 region. On the basis of the magnetic susceptibility, i.r. and molecular weight data a dimetallic structure with alcoholic oxygen atoms as the bridging atoms is suggested.

Keywords

Magnetic Susceptibility Schiff Base Ethanolamine Salicylaldehyde Antiferromagnetic Exchange 

Abbreviations

sal

salicylaldehyde

5-chlorosal

5-chlorosalicylaldehyde

5-bromosal

5-bromosalicylaldehyde

5-nitrosal

5-nitrosalicylaldehyde

3-ethoxysal

3-ethoxysalicylaldehyde

hydroxy

2-hydroxyl-1-naphthaldehyde

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    E. I. Stiefel,Prog. Inorg. Chem., 22, 1 (1977).Google Scholar
  2. (2).
    P. C. H. Mitchel,Quart. Rev. (London), 20, 103 (1966);Coord. Chem. Rev., 1, 315 (1966).Google Scholar
  3. (3).
    J. Selbin,Chem. Rev., 65, 293 (1966);Coord. Chem. Rev., 1, 293 (1966).Google Scholar
  4. (4).
    A. Syamal,Coord. Chem. Rev., 16, 309 (1975).Google Scholar
  5. (5).
    R. H. Holm, G. W. Everett, Jr. and A. Chakravorty,Prog. Inorg. Chem., 7, 83 (1966).Google Scholar
  6. (6).
    A. Syamal and L. J. Theriot,J. Coord. Chem., 2, 193, 241 (1973); A. Syamal and K. S. Kale,Inorg. Chem., 18, 992 (1979);Indian J. Chem., 19A, 483 (1980).Google Scholar
  7. (7).
    F. J. Welcher,Organic Analytical Reagents, Vol. III, D. Van Nostrand Co., New York, 1947, p. 254.Google Scholar
  8. (8).
    W. G. Palmer,Experimental Inorganic Chemistry, Oxford University Press, London, 1954, p. 406.Google Scholar
  9. (9).
    A. Syamal and D. Kumar,J. Less Common Metals, 71, 113 (1980).Google Scholar
  10. (10).
    R. L. Dutta and A. Syamal,Elements of Magnetochemistry, S. Chand & Co., New Delhi, 1982, p. 9.Google Scholar
  11. (11).
    R. C. Bray,Enzymes, 12, 299 (1975); R. A. D. Wentworth,Coord. Chem. Rev., 18, 1 (1976).Google Scholar
  12. (12).
    R. B. Coles, C. M. Harris and E. Sinn,Inorg. Chem., 8, 2607 (1969); J. O. Miners, R. B. Coles and C. M. Harris,J. Chem. Soc., Dalton Trans., 1149 (1972).Google Scholar
  13. (13).
    A. Syamal, S. Ahmed and O. P. Singhal,Transition Met. Chem., 8, 156 (1983) and refs. therein.Google Scholar
  14. (14).
    D. A. Edwards,J. Inorg. Nucl. Chem., 27, 303 (1965); R. L. Dutta and B. Chatterjee,J. Indian Chem. Soc., 44, 758 (1967).Google Scholar
  15. (15).
    A. K. Gregson, R. L. Martin and S. Mitra,Proc. R. Soc., London, Ser. A., 320, 473 (1971).Google Scholar

Copyright information

© VCH Verlagsgesellschaft mbH 1985

Authors and Affiliations

  • Arun Syamal
    • 1
    • 2
  • M. A. Bari Niazi
    • 1
    • 2
  1. 1.Department of Applied Sciences and HumanitiesKurukshetra UniversityKurukshetra 132119 HaryanaIndia
  2. 2.Department of ChemistryRegional Engineering CollegeKurukshetra 132119 HaryanaIndia

Personalised recommendations