Advertisement

Transition Metal Chemistry

, Volume 4, Issue 6, pp 354–360 | Cite as

3- and 4-Pyridinecarboxylic acidN-oxide complexes with manganese(II), cobalt(II) and nickel(II) chlorides

  • Larry S. Gelfand
  • Louis L. Pytlewski
  • Chester M. Mikulski
  • Anthony N. Speca
  • Nicholas M. Karayannis
Full Papers

Summary

During interaction of ethanol-triethyl orthoformate solutions of nicotinic or isonicotinic acidN-oxides (LH and L′H, respectively) with MCl2 (M = Mn, Co, Ni), only one true adduct, of the Ni(LH)3Cl2 · 2 H2O type was obtained. In all other cases, partial substitution of Cl ions with the corresponding pyridinecarboxylateN-oxide anionic ligands (L or L′) occurred. As a result, mixed ligands (LH-L or L′H-L′) were precipitated, as follows: Mn(LH)2LCl, Co(LH)LCl, Mn(L′H)L′Cl · 4H2O, Co(L′H)L′Cl · H2O and Ni2(L′H)L′Cl3 · 6 H2O. The insolubility of the new complexes in all common solvents, combined with the pronounced tendency of the 3- and 4-pyridinecarboxylates and theirN-oxides to function as bidentate bridging ligands, favours bi- or polynuclear structures. Spectral data suggest that Ni(LH)3Cl2 · 2 H2O is hexacoordinate, and the rest of the new complexes pentacoordinate. Bi- or polynuclear structures, involving double -M-(L)2-M- or-M-(LH)2-M- and single -M-(L′)-M- or-M(L′)-M-(L′H)-M- bridges, were proposed on the basis of the overall evidence; additional features of the proposed structural types are: exclusively coordinated chloro ligands, in all cases; aqua ligands [Co(L′H)L′Cl · H2O]; lattice water [Ni(LH)2Cl2 · 2H2O]; both lattice and coordinated H2O [Mn(L′H)L′Cl · 4H2O, and Ni2(L′H)L′Cl3 · 6H2O]; and, with the exception of Ni2(L′H)L′Cl3 · 6 H2O, terminal, unidentate, N-O oxygen-bonded LH or L′H ligands.

Keywords

Chloride Nickel Cobalt Manganese Inorganic Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. N. Speca, L. S. Gelfand, L. L. Pytlewski, C. Owens and N. M. Karayannis,Inorg. Chem., 15, 1493 (1976);J. Inorg. Nucl. Chem., 39, 537 (1977).Google Scholar
  2. (2).
    L. S. Gelfand, L. L. Pytlewski, D. L. Cosgrove, C. M. Mikulski, A. N. Speca and N. M. Karayannis,Inorg. Chim. Acta, 27, L97 (1978).Google Scholar
  3. (3).
    Idem., ibid., 32, 59 (1979).Google Scholar
  4. (4).
    A. N. Speca, L. S. Gelfand, F. J. Iaconianni, L. L. Pytlewski, C. M. Mikulski and N. M. Karayannis,Proc., XIX ICCC, Prague, Czechoslovakia, September 4–8, 1978, vol. II, 116a.Google Scholar
  5. (5).
    L. S. Gelfand, L. L. Pytlewski, C. M. Mikulski, A. N. Speca and N. M. Karayannis,Inorg. Chim. Acta, in press.Google Scholar
  6. (6).
    W. H. Watson,Inorg. Chem., 8, 1879 (1969).Google Scholar
  7. (7).
    D. J. Hodgson,Progr. Inorg. Chem., 19, 173 (1975).Google Scholar
  8. (8).
    Y. Muto, M. Kato, H. B. Jonassen and H. N. Ramaswamy,Bull. Chem. Soc. Japan, 40, 1535 (1967); M. Kato, Y. Muto and H. B. Jonassen,ibid., 40, 1738 (1967); Y. Muto, M. Kato, H. B. Jonassen and K. Kakiuchi,ibid., 41, 1495 (1968); Y. Muto, M. Kato, H. B. Jonassen and L. C. Cusachs,ibid., 42, 417 (1969).Google Scholar
  9. (9).
    R. Gafarova and K. Asamov,Sb. Nauchn. Tr., Tashkent Univ., 498, 54 (1976);Khim. Zh., 5V127 (1977);Chem. Abstr., 86, 178347 (1977).Google Scholar
  10. (10).
    Kh. R. Rakhimov, R. Gafarova and K. A. Asamov,Sb. Nauchn. Tr., Tashkent Gos. Univ., 435, 12 (1973);Khim. Zh., 7V136 (1974);Chem. Abstr., 81, 144888 (1974).Google Scholar
  11. (11).
    H. G. Lee, D. S. Dyer and R. O. Ragsdale,J. Chem. Soc. Dalton Trans., 1325 (1976).Google Scholar
  12. (12).
    G. Costa and E. Pauluzzi,Univ. Studi Trieste, Fac. Sci., Ist. Chim., Pubbl., 12 (1956);Chem. Abstr., 51, 4823b (1957).Google Scholar
  13. (13).
    Y. Kakiuti, S. Kida and J. V. Quagliano,Spectrachim. Acta, 19, 201 (1963); L. C. Nathan and R. O. Ragsdale,Inorg. Chim. Acta, 10, 177 (1974).Google Scholar
  14. (14).
    M. Zackrisson and I. Lindqvist,J. Inorg. Nucl. Chem., 17, 69 (1961).Google Scholar
  15. (15).
    P. W. N. M. van Leeuwen and W. L. Groeneveld,Rec. Trav. Chim., 87, 86 (1968).Google Scholar
  16. (16).
    V. M. Ellis, R. S. Vagg and E. C. Watton,J. Inorg. Nucl. Chem., 36, 1031 (1974).Google Scholar
  17. (17).
    J.-P. Deloume, R. Faure and H. Loiseleur,Acta Crystallogr., B33, 2709 (1977).Google Scholar
  18. (18).
    A. B. P. Lever, J. Lewis and R. S. Nyholm,J. Chem. Soc., 5262 (1962); W. Byers, B. Fa-Chun Chou, A. B. P. Lever and R. V. Parish,J. Am. Chem. Soc., 91, 1329 (1969).Google Scholar
  19. (19).
    K. Nakamoto, Y. Morimoto and A. E. Martell,J. Am. Chem. Soc., 83, 4528 (1961); R. E. Sievers and J. C. Bailar, Jr.,Inorg. Chem., 1, 174 (1962).Google Scholar
  20. (20).
    K. Nakamoto, J. Fujita, S. Tanaka and M. Kobayashi,J. Am. Chem. Soc., 79, 4904 (1957).Google Scholar
  21. (21).
    A. R. Katritzky, J. A. T. Beard and N. A. Coats,J. Chem. Soc., 3680 (1959).Google Scholar
  22. (22).
    A. R. Katritzky and J. N. Gardner,J. Chem. Soc., 2192 (1958).Google Scholar
  23. (23).
    I. Nakagawa and T. Shimanouchi,Spectrochim. Acta, 20, 429 (1964); K. Ichida, T. Kuroda, D. Nakamura and M. Kubo,ibid., 28A, 2433 (1972).Google Scholar
  24. (24).
    M. Hass and G. B. B. M. Sutherland,Proc. Roy. Soc., 236A, 427 (1956).Google Scholar
  25. (25).
    G. W. A. Fowles, R. W. Matthews and R. A. Walton,J. Chem. Soc., A, 1108 (1968).Google Scholar
  26. (26).
    S. A. Boyd, R. E. Kohrman and D. X. West,Inorg. Nucl. Chem. Lett., 12, 603 (1976);13, 129 (1977).Google Scholar
  27. (27).
    S. Yoshida and M. Asai,Chem. Pharm. Bull., 7, 162 (1959); R. F. Evans and W. Kynaston,J. Chem. Soc., 1005 (1962).Google Scholar
  28. (28).
    W. B. Wright and G. S. D. King,Acta Crystallogr., 6, 305 (1953).Google Scholar
  29. (29).
    A. D. van Ingen Schenau, W. L. Groeneveld and J. Reedijk,Spectrochim. Acta, 30A, 213 (1974); A. D. van Ingen Schenau, C. Romers, D. Knetsch and W. L. Groeneveld,ibid., 33A, 859 (1977).Google Scholar
  30. (30).
    A. T. Hutton and D. A. Thornton,J. Mol. Struct., 39, 33 (1977).Google Scholar
  31. (31).
    N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes,J. Inorg. Nucl. Chem., 33, 3185 (1971).Google Scholar
  32. (32).
    R. J. H. Clark and C. S. Williams,Inorg. Chem. 4, 350 (1965); R. J. H. Clark,Spectrochim. Acta, 21, 955 (1965).Google Scholar
  33. (33).
    D. Bryson and R. H. Nuttall,Spectrochim. Acta, 26A, 2275 (1970).Google Scholar
  34. (34).
    P. Bamfield, R. Price and R. G. J. Miller,J. Chem. Soc. A, 1447 (1969).Google Scholar
  35. (35).
    B. N. Figgis and J. Lewis,Progr. Inorg. Chem., 6, 37 (1964).Google Scholar
  36. (36).
    M. Ciampolini and N. Nardi,Inorg. Chem., 5, 41, 1150 (1966); M. Ciampolini and G. P. Speroni,ibid., 5, 45 (1966).Google Scholar
  37. (37).
    A. M. Brodie, S. H. Hunter, G. A. Rodley and C. J. Wilkins,Inorg. Chim. Acta, 2, 195 (1968).Google Scholar
  38. (38).
    N. M. Karayannis, C. M. Mikulski, L. L. Pytlewski and M. M. Labes,J. Inorg. Nucl. Chem., 34, 3139 (1972);Inorg. Chem., 13, 1146 (1974).Google Scholar
  39. (39).
    L. Sacconi,J. Chem. Soc. A, 248 (1970).Google Scholar
  40. (40).
    H. H. Jaffé,J. Am. Chem. Soc., 77, 4451 (1955).Google Scholar
  41. (41).
    L. R. Caswell, F. C. Lee and L. T. Creagh,J. Heterocycl. Chem., 9, 551 (1972).Google Scholar
  42. (42).
    N. Hata,Bull. Chem. Soc. Japan, 31, 255 (1958).Google Scholar
  43. (43).
    J. H. Nelson, R. G. Garvey and R. O. Ragsdale,J. Heterocycl. Chem., 4, 591 (1967).Google Scholar
  44. (44).
    W. Byers, A. B. P. Lever and R. V. Parish,Inorg. Chem., 7, 1835 (1968).Google Scholar
  45. (45).
    A. B. P. Lever and D. Ogden,J. Chem. Soc. A, 2041 (1967).Google Scholar
  46. (46) a.
    L. Sacconi and I. Bertini,Inorg. Chem., 7, 1178 (1968)Google Scholar
  47. (46) b.
    C. M. Mikulski, L. S. Gelfand, L. L. Pytlewski, J. S. Skryantz and N. M. Karayannis,Inorg. Chim. Acta, 21, 9 (1977).Google Scholar
  48. (47).
    I. Bertini, P. Dapporto, D. Gatteschi and A. Scozzafava,Inorg. Chem., 14, 1639 (1975).Google Scholar
  49. (48).
    A. Kleinstein and G. A. Webb,J. Inorg. Nucl. Chem., 33, 405 (1971).Google Scholar
  50. (49).
    B. Banerjee and P. Rây,J. Indian Chem. Soc., 33, 503 (1956);34, 207, 859 (1957); R. P. Eckberg and W. E. Hatfield,Inorg. Chem., 14, 1205 (1975).Google Scholar
  51. (50).
    M. Biagini-Cingi, A. Gaetani-Manfredotti, C. Guastini and M. Nardelli,Gazz. Chim. Ital., 102, 1034 (1972); M. Biagini-Cingi, A. Gaetani-Manfredotti, C. Guastini and A. Musatti,ibid., 105, 117 (1975).Google Scholar
  52. (51).
    A. Anagnostopoulos,Inorg. Nucl. Chem. Lett., 10, 525 (1974).Google Scholar
  53. (52).
    Y. Kidani, M. Noji and H. Koike,Yakugaku Zasshi, 93, 1269 (1973);Chem. Abstr., 80, 59829 (1974).Google Scholar
  54. (53).
    N. M. Karayannis, A. N. Speca, D. E. Chasan and L. L. Pytlewski,Coord. Chem. Rev., 20, 37 (1976).Google Scholar
  55. (54).
    P. W. N. M. van Leeuwen and W. L. Groeneveld,Inorg. Nucl. Chem. Lett., 3, 145 (1967).Google Scholar
  56. (55).
    L. C. Nathan, J. Cullen and R. O. Ragsdale,Inorg. Nucl. Chem. Lett., 12, 137 (1976).Google Scholar
  57. (56).
    N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes,Inorg. Chim. Acta, 8, 91 (1974).Google Scholar
  58. (57).
    A. N. Speca, N. M. Karayannis and L. L. Pytlewski,J. Inorg. Nucl. Chem., 35, 3113 (1973).Google Scholar

Copyright information

© Verlag Chemie, GmbH 1979

Authors and Affiliations

  • Larry S. Gelfand
    • 1
  • Louis L. Pytlewski
    • 1
  • Chester M. Mikulski
    • 2
  • Anthony N. Speca
    • 3
  • Nicholas M. Karayannis
    • 4
  1. 1.Department of ChemistryDrexel UniversityPhiladelphiaUSA
  2. 2.Department of Chemistry and PhysicsBeaver CollegeGlensideUSA
  3. 3.Research DivisionUSI Chemicals Co.CincinnatiUSA
  4. 4.Amoco Chemicals CorporationNapervilleUSA

Personalised recommendations