Skip to main content
Log in

Effects of mucosal lanthanum on electrical parameters of isolated frog skin

Mechanism of action

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The effect of mucosal La3+ on electrical parameters of isolated frog skins was studied on isolated frog skins with normally polarized or depolarized apical membrane. La3+ increases Rs, the paracellular or shunt resistance and diminishes RNa, the resistance of the active sodium path, in both polarized and depolarized skins.

The stimulatory effect of La3+ on short-circuit current (Is.c.) is correlated with this decrease in RNa. The characteristics of the stimulatory effect are: very rapid onset, ionic strength dependency, the possibility of being elicited by many other ions besides La3+. These features allow us to postulate that La3+ might affect the external interfacial potential which in turn affects the resistance of the sodium path.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aceves, J.: Pumped movements of sodium and potassium ions in the isolated epithelium of the frog skin. Pflügers Arch.371, 201–209 (1977)

    Google Scholar 

  2. Bentley, P. K. J.: The effects of vasopressin on the short-circuit current across the wall of the isolated bladder of the toad Bufo Matinus. J. Endocr.21, 161–170 (1960)

    Google Scholar 

  3. Bamberg, E., Lauger, P.: Blocking of the gramicidin channel by divalent cations. J. Memb. Biol.35, 351–376 (1977)

    Google Scholar 

  4. Bockris, O. M., Reddy, A. K. N.: Modern electrochemistry., New-York: Plenum Press 1977

    Google Scholar 

  5. Cereijido, M., Rotunno, C. A.: Fluxes and distribution of sodium in Frog skin. A new model. J. Gen. Physiol.51, 280–289 (1968)

    Google Scholar 

  6. Crabbé, J., Ehrlich, E. N.: Amiloride and the mode of action of aldosterone on sodium transport across toad bladder and skin. Pflügers Arch.304, 284–296 (1968)

    Google Scholar 

  7. Curran, P. F., Gill, J. R.: The effect of calcium on sodium transport by Frog skin. J. Gen. Physiol.45, 625–641 (1962)

    Google Scholar 

  8. Curran, P. F.: Effect of silver ion on permeability properties of Frog skin. Biochim. Biophys. Acta.288, 90–97 (1972)

    Google Scholar 

  9. D'Arrigo, J. S.: Possible screning of surface charges on Crayfish axons by polyvalent metal ions. J. Cen. Physiol.231, 117–128 (1973)

    Google Scholar 

  10. De Souza, R. C.: Mécanismes de transport de l'eau et du sodium par les cellules des epithelia d'Amphibiens et du tubule rénal isolé. J. Physiol. (Paris)71, 5A-71A (1975)

    Google Scholar 

  11. Dörge, A., Nagel, W.: Effect of amiloride on sodium transport in Frog skin. II. Sodium transport pool and unidirectional fluxes. Pflügers Arch.321, 91–101 (1970)

    Google Scholar 

  12. Erlij, D.: Salt transport across isolated Frog skin. Phil. Trans. Roy. Soc. (B)262, 153–161 (1971)

    Google Scholar 

  13. Ferreira, K. T. G.: The effect of Cu2+ on isolated Frog skin. Biochim. Biophys. Acta.203, 555–567 (1970)

    Google Scholar 

  14. Finkelstein, A.: Electrical activity of isolated Frog skin. Nature190, 1119–1121 (1961)

    Google Scholar 

  15. Fuchs, W., Hviid Larsen, E., Lindemann, B.: Current-voltage curve of sodium channels and concentration dependence of sodium permeability in Frog skin. J. Physiol.267, 137–166 (1977)

    Google Scholar 

  16. Garcia-Romeu, F.: Anionic and cationic exchange mechanism in skin of anurans, with special reference to Leptodactylidae in vivo. Phil. Trans. Roy. Soc., London (B)262, 163–174 (1971)

    Google Scholar 

  17. Gilbert, D. I., Ehrenstein, G.: Effect of divalent cation on potassium conductance of Squid axons: determination of surface charge. Biophys. J.9, 447–463 (1969)

    Google Scholar 

  18. Grahame, D. C.: The electrical double layer and the theory of electrocapilarity. Chem. Rev.41, 441–504 (1947)

    Google Scholar 

  19. Grinstein, S., Erlij, D.: The role of surface potential in the regulation of transepithelial Na transport. Physiologist19, 211 (1976)

    Google Scholar 

  20. Hagiwara, S., Takahashi, K.: Surface density of calcium ions and calcium spikes in the Barnacle muscle fiber membrane. J. Gen. Physiol.50, 583–601 (1967)

    Google Scholar 

  21. Hajjar, J. J., Abu-Murad, C., Khuri, R. N., Nassar, R.: Effect of Mn++ on permeability properties of Frog skin. Pflügers Arch.359, 57–67 (1975)

    Google Scholar 

  22. Hayashi, H., Takada, M., Arita, A.: Effects of cadmium on the active transport of sodium by the abdominal skin of a bull frog (Rana Catesbiana). Jap. J. Physiol.27, 337–352 (1977)

    Google Scholar 

  23. Helman, S. J., Fisher, R. S.: Microelectrode studies of the active Na transport pathway of Frog skin. J. Gen. Physiol.69, 571–604 (1977)

    Google Scholar 

  24. Herman, T. S.: Effect of Lanthanum (La) on transepithelial sodium transport in toad bladder. Fed. Proc.23 (no 3), 239–240 (1974)

    Google Scholar 

  25. Hille, B.: Charges and potentials at the nerve surface: divalent ions and pH. J. Gen. Physiol.51, 221–236 (1968)

    Google Scholar 

  26. Hille, B., Woodhull, Shapiro, B. I.: Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions and pH. Phil. Trans. R. Soc. Lond. (B)270, 301–318 (1975)

    Google Scholar 

  27. Hillyard, S. D., Gonick, H. C.: Effects of Cd++ on short-circuit current across epithelial membranes. I. Interactions with Cd++ and vasopressin on Frog skin. J. Memb. Biol.26, 109–119 (1976)

    Google Scholar 

  28. Hong, C. D., Essig, A.: Effects of 2-deoxy-D-glucose, amiloride, vasopressin and ouabain on active conductance and ENa in the toad bladder. J. Memb. Biol.28, 121–142 (1976)

    Google Scholar 

  29. Ito, Y., Kuriyama, H., Tashiro, N.: Effects of divalent cations on spike generation in the longitudinal somatic muscle of the earth worm. J. Exp. Biol.52, 79–94 (1970)

    Google Scholar 

  30. Julian, F. J., Moore, J. W., Goldman, D. E.: Current-voltage relations in the Lobster giant axon membrane under voltage clamp conditions. J. Gen. Physiol.45, 1217–1238 (1962)

    Google Scholar 

  31. Janacek, K.: The effect of low concentrations of thiol-group blocking agents on the outer membrane of Frog skin. Biochem. Biophys. Acta56, 42–48 (1962)

    Google Scholar 

  32. Koefoed-Johnsen, V., Ussing, H. H.: The nature of the Frog skin potential. Acta Physiol. Scand.42, 298–308 (1958)

    Google Scholar 

  33. Lewis, S. A., Diamond, J. M.: Na transport by Rabbit urinary bladder a tight epithelium. J. Memb. Biol.28, 1–40 (1976)

    Google Scholar 

  34. Lipman, K. M., Dodelson, R., Hays, R. M.: The surface charge of isolated Toad bladder cells. J. Gen. Physiol.49, 501–510 (1966)

    Google Scholar 

  35. Lindemann, B.: Electrical excitation of the outer resistive membrane in Frog skin epithelium. In: Electrophysiology of epithelial cells. (Giebisch G. ed.), pp. 53–86 Stuttgart, New York: F. K. Schattauer Verlag 1970

    Google Scholar 

  36. McLaughlin, S. G. A., Szabo, G., Eisenman, G.: Divalent ions and the surface potential of charged phospholipid membranes. J. of Gen. Physiol.58, 667–687 (1971)

    Google Scholar 

  37. Martinez-Palomo, A., Erlij, D., Bracho, H.: Localizations of permeability barriers in the Frog skin epithelium. J. Cell Biol.50, 277–287 (1971)

    Google Scholar 

  38. Mikkelsen, R. B.: Lanthanides as calcium probes in biomembranes, p. 153–190. In: Biological membrane (Vol. 3), D. Chapman and F. H. Wallach, eds. New York: Acad. Press 1976

    Google Scholar 

  39. Nagel, W.: Intracellular electrical potential profile of the Frog skin epithelium. Pflügers Arch.365, 135–143 (1976)

    Google Scholar 

  40. Nagel, W.: Effects of ADH upon electrical potential and resistance of apical and basolateral membranes of Frog skin. J. Memb. Biol.42, 99–122 (1978)

    Google Scholar 

  41. Nagel, W., Helman, S. I.: Evidence for electrogenic transport of Na in Frog skin revealed in microelectrodes studies using ouabain. Pflügers Arch.368, R22 (1977)

    Google Scholar 

  42. Naharashi, T.: Dependence of excitability of Cockroach giant axons on external divalent cations. Comp. Biochem. Physiol.19, 759–774 (1966)

    Google Scholar 

  43. Pietras, R. J., Wright, E. M.: The membrane action of antidiuretic hormone on Toad urinary bladder. J. Memb. Biol.22, 107–123 (1975)

    Google Scholar 

  44. Rawlins, F., Mateu, L., Fragachan, F., Whittembury, G.: Isolated Toad skin epithelium: transport characteristics. Pflügers Arch.316, 64–80 (1970)

    Google Scholar 

  45. Rick, R., Dörge, A., Von Arnim, E., Thurau, K.: Electron microprobe analysis of Frog skin epithelium: Evidence for a syncytial sodium transport compartment. J. Memb. Biol.39, 313–331 (1978)

    Google Scholar 

  46. Skou, J. C., Zerahn, K.: Investigations on the effect of some local anaesthetics and other amines on the active transport of sodium through the isolated short-circulated Frog skin. Biochim. Biophys. Acta.35, 324–333 (1959)

    Google Scholar 

  47. Strum, J. M.: Lanthanum staining of the lateral and basal membranes of the mitochondria. Rich cell in Toad bladder epithelium. J. Ultrastruc. Research.59, 126–139 (1977)

    Google Scholar 

  48. Taylor, A., Eich, E., Pearl, M.: Cytosolic calcium and action of vasopressin in Toad bladder. Proc. Intern. Union Physiol. Sciences, Paris, 745, 1977

  49. Ussing, H. H.: The distinction by means of tracers between active transport and diffusion. The transport of iodine across the isolated frog skin. Acta Physiol. Scand.19, 43–56 (1949)

    Google Scholar 

  50. Ussing, H. H., Windhager, E. E.: Nature of the shunt path and active sodium transport path through skin epithelium. Acta Physiol. Scand.61, 484–504 (1964)

    Google Scholar 

  51. Vogel, W.: Calcium and Lanthanum effects at the nodal membrane. Pflügers Arch.350, 25–39 (1974)

    Google Scholar 

  52. Weiss, G. B.: Cellular pharmacology of lanthanum. Ann. Rev. Pharmacol.14, 343–354 (1974)

    Google Scholar 

  53. Wiesmann, W., Sinha, S., Klahr, S.: Effects of ionophore A23187 on baseline and vasopressin-stimulated sodium transport in the toad bladder. J. Clin. Inv.59, 418–425 (1977)

    Google Scholar 

  54. Wietzerbin, J.: L'action du lanthane au niveau de la membrane apicale et le mécanisme de régulation hormonale de la permabilit à l'eau et au sodium de l'épithélium de Grenouille. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie. (Paris VI), 1977

    Google Scholar 

  55. Wietzerbin, J., Lange, Y., Gary-Bobo, C. M.: Lanthanum inhibition of the action of oxytocin on the water permeability of the frog urinary bladder: effect on the serosal and the apical membrane. J. Memb. Biol.17, 27–40 (1974)

    Google Scholar 

  56. Wietzerbin, J., Goudeau, H., Gary-Bobo, C. M.: Influence of membrane polarization and hormonal stimulation on the action of lanthanum on frog skin sodium permeability. Pflügers Arch.370, 145–153 (1977)

    Google Scholar 

  57. Yonath, J., Civan, M. M.: Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin. J. Memb. Biol.5, 366–385 (1971)

    Google Scholar 

  58. Zeiske, W., Lindemann, B.: Chemical stimulation of Na+ current through the outer surface of skin epithelium. Biochim. Biophys. Acta.352, 323–326 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goudeau, H., Wietzerbin, J. & Gary-Bobo, C.M. Effects of mucosal lanthanum on electrical parameters of isolated frog skin. Pflugers Arch. 379, 71–80 (1979). https://doi.org/10.1007/BF00622907

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00622907

Key words

Navigation