Skip to main content
Log in

Transient moisture transport in a cracked porous medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Condensation under high relative humidity, imbibition under zero capillary pressure, and drying in a cracked mesoporous slab is numerically simulated. The porous medium is homogeneous, the crack lattice is periodic and has uniform aperture and transport properties. It is found that the crack lattice density and the crack hydraulic conductivity has minor influence on the global kinetics of condensation and drying, and a strong influence on the imbibition kinetics. The transient effects of the heterogeneity of the medium are examined from three view-points: the study of the spatial distribution of pressure head, the tentative definition of an effective diffusivity, and the comparison between the quasi-static and transient transport properties. The equivalent homogeneous medium approach is found to be relatively satisfactory to describe the global kinetics in the three processes. The transient effects appear in secondary features of the processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

a :

distance between two cracks [m]

d c :

crack aperture [m]

D a :

diffusivity of vapour in air [m2s−1]

D v :

diffusivity of vapour in a porous medium [m2s−1]

D Θ :

moisture diffusivity [m2s−1]

g :

gravity constant [ms−2]

h :

pressure head [h=(p l-pa)/ρ lg][m]

k :

equivalent global hydraulic conductivity (homogeneous medium) [ms−1]

K :

equivalent quasi-static hydraulic conductivity (cracked medium) [ms−1]

M :

molecular weight of water [kg mole−1]

R :

gas constant [J mole−1K−1]

t :

time [s]

T :

temperature [K]

x,y :

space coordinates [m]

γ :

volumetric water content

θ:

averaged volumetric water content

ρ :

density [kg m−3]

σ :

surface tension of water [Nm−1]

ψ :

relative humidity [ψ = ρ vvs]

a :

air

c :

crack

f :

front

l :

liquid

m :

meniscus

sat :

saturated

v :

vapour

vs :

saturated vapour

References

  • Ababou, R., McLaughlin, D., Gelhar, L. W., and Tompson, A. F. B., 1989, Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media,Transport in Porous Media 4, 549–566.

    Google Scholar 

  • Aleman, M. A., Ramamohan, T. R., Gelhar, J. C., and Slattery, J. C., 1989, The difference between steady-state and unsteady-state relative permeabilities,Transport in Porous Media 4, 449–494.

    Google Scholar 

  • Auriault, J. L. and Boutin, C., 1992, Deformable porous media with double porosity. Quasi-statics. I: coupling effects,Transport in Porous Media 7, 63–82.

    Google Scholar 

  • Bazant, Z. P., Sener, S., and Kim, J. K., 1987, Effect of cracking on drying permeability and diffusivity of concrete,ACI Materials J., Sept.-Oct. 1987, 351–360,

  • Bertin, H., Quintard, M., Corpel, P. V., and Whitaker, S., 1990, Two-phase flow in heterogeneous porous media III: laboratory experiments for flow parallel to a stratified system,Transport in Porous Media 5, 543–591.

    Google Scholar 

  • Cary, J. W. and Streile, G. P., 1990, Discussion on ‘Condensation and isothermal water transfer in cement mortar. Part 2 — Transient condensation of water vapor’ by J. F. DaÏan,Transport in Porous Media 5, 207–208.

    Google Scholar 

  • Charlaix, E., 1986, Percolation threshold of a random array of discs: a numerical simulation,J. Phys. A Lett. 19, L533-L536.

    Google Scholar 

  • Charlaix, E., Guyon, E., and Roux, S., 1987, Permeability of a random array of fractures of widely varying apertures,Transport in Porous Media 2, 31–43.

    Google Scholar 

  • DaÏan, J. F., 1988a, Condensation and isothermal water transfer in cement mortar. Part 1 — Pore size distribution, equilibrium water condensation and imbibition,Transport in Porous Media 3, 563–589.

    Google Scholar 

  • DaÏan, J. F., 1988b, The interaction between condensed and gaseous water during migration processes in porous media, in A. S. Mudjumdar and M. Roques (eds),Drying 89, Elsevier, Amsterdam, pp. 113–118.

    Google Scholar 

  • DaÏan, J. F., 1989, Condensation and isothermal water transfer in cement mortar. Part 2 — Transient condensation of water vapor,Transport in Porous Media 4, 1–16.

    Google Scholar 

  • DaÏan, J. F., 1990, Response to discussion on ‘Condensation and isothermal water transfer in cement mortar. Part 2-Transient condensation of water vapor’ by J. W. Cary and G. P. Streile,Transport in Porous Media 5, 209–211.

    Google Scholar 

  • DaÏan, J. F. and Merouani, L., 1989, Experimental and numerical study of drying. Compared behaviours of two building materials, in A. S. Mudjumdar and M. Roques (eds),Drying 89, Elsevier, Amsterdam, pp. 76–82.

    Google Scholar 

  • DaÏan, J. F. and Saliba, J., 1990, Using a pore-network model to simulate the experimental drying of cement mortar,7th Int. Drying Symp. E6, 1694.

    Google Scholar 

  • DaÏan, J. F. and Saliba, J., 1991, Détermination d'un réseau aléatoire de pores pour modéliser la Sorption et la migration d'humidité dans un mortier de ciment,Int. J. Heat Mass Transfer 34(8), 2081–2096.

    Google Scholar 

  • Diaz, C. E., Chatzis, I., and Dullien, F. A. L., 1987, Simulation of capillary pressure curves using bond correlated site percolation on a simple cubic network,Transport in Porous Media 2, 215–240.

    Google Scholar 

  • Dullien, F. A. L., 1979,Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, USA.

    Google Scholar 

  • Green, W. H. and Ampt, C. A., 1911, Studies in soil physics. I: flow of air and water through soils.J. Agr. Sic. 4, 1–24.

    Google Scholar 

  • Grismer, M. E., 1987a, Kinetics of vapor adsorption on soils, Soil Sci.143, 367–371.

    Google Scholar 

  • Grismer, M. E., 1987b, Vapor adsorption kinetics and vapor diffusivity,Soil Sci. 144, 1–5.

    Google Scholar 

  • Grismer, M. E., 1988, Vapor adsorption kinetics and isothermal infiltration,Soil Sci. 146, 297–302.

    Google Scholar 

  • Gwirtzman, H., Magaritz, M., and Kanfi, Y., 1988, Matrix and fissure water movement through unsaturated calcareous sandstones,Transport in Porous Media 3, 343–356.

    Google Scholar 

  • Hall, C., 1989, Water sorptivity of mortars and concretes: a review,Mag. Concrete Res. 41, 51–61.

    Google Scholar 

  • Kirkpatrick, S., 1973, Percolation and conduction,Rev. Mod. Phys. 45, 574–588.

    Google Scholar 

  • Kissling, W. and Young, R. M., 1989, Two-dimensional flow in a fractured medium,Transport in Porous Media 4, 335–368.

    Google Scholar 

  • Knab, L. I., Walker, H. N., Clifton, J. R., and Fuller, E. R., 1984, Fluorescent thin sections to observe the fracture zone in mortar,Cement Concrete Res. 14, 339–344.

    Google Scholar 

  • Lenormand, R., Touboul, E., and Zarcone, C., 1988, Numerical models and experiments on immiscible displacements in porous media,J. Fluid Mech. 189, 165–187.

    Google Scholar 

  • Long, J. C. S. and Billaux, D. M., 1987, From field data to fracture network modelling: an example incorporating spatial structure,Water Resour. Res. 23, 1201–1216.

    Google Scholar 

  • Lowe, I. R. G., Hughes, B. P., and Walker, J., 1971, The diffusion of water in Concrete at 30‡C,Cement Concrete Res. 1, 547–557.

    Google Scholar 

  • Mantoglou, A. and Gelhar, L. W., 1987a, Stochastic modeling of large-scale transient unsaturated flow systems,Water Resour. Res. 23, 37–46.

    Google Scholar 

  • Mantoglou, A. and Gelhar, L. W., 1987b, Capillary tension head variance, mean soil moisture content and effective specific soil moisture capacity of transient unsaturated flow in stratified soils,Water Resour. Res. 23, 47–56.

    Google Scholar 

  • Mantoglou, A. and Gelhar, L. W., 1987c, Effective hydraulic conductivity of transient unsaturated flow in stratified soils,Water Resour. Res. 23, 57–68.

    Google Scholar 

  • Mantoglou, A. and Gelhar, L. W., 1989. Three-dimensional unsaturated flow in heterogeneous systems and implications on groundwater contamination: a stochastic approach,Transport in Porous Media 4, 529–548.

    Google Scholar 

  • Mensi, R., Acker, P. and Attolou, A., 1988, Séchage du béton: analyse et modélisation,Materials and Structures 21, 3–12.

    Google Scholar 

  • Mindess, S. and Diamond, S., 1982, The cracking and fracture of mortar,Materials and Structures 15, 107–113.

    Google Scholar 

  • Morel-Seytoux, H. J. and Khandji, J., 1974, Derivation of an equation of infiltration,Water Resour. Res. 10, 795–800.

    Google Scholar 

  • Nitao, J. J. and Buscheck, T. A., 1991, Infiltration of a liquid front in an unsaturated fractured porous medium,Water Resour. Res. 27, 2099–2112.

    Google Scholar 

  • Perrin, B., Foures, J. C., and Javelas, R., 1983, Determination du coefficient de diffusion isotherme de l'humidité dans les matériaux de construction,Materials and Structures 16, 27–33.

    Google Scholar 

  • Quintard, M. and Whitaker, S., 1990a, Two-phase flow in heterogeneous porous media I: the influence of large spatial and temporal gradients,Transport in Porous Media 5, 341–380.

    Google Scholar 

  • Quintard, M. and Whitaker, S., 1990b, Two-phase flow in heterogeneous porous media II: numerical experiments for flow perpendicular to a stratified system,Transport in Porous Media 5, 429–472.

    Google Scholar 

  • Saliba, J., 1990, Propriétés de transfert hydrique du mortier de ciment: modélisation à l'échelle microscopique; étude à l'échelle macroscopique des effets dynamiques des hétérogénéités, Thèse de Doctorat, Université Joseph Fourier, Grenoble, France.

  • Sayers, C. M., 1990, Stress-induced fluid flow anisotropy in fractured rocks,Transport in Porous Media 5, 287–297.

    Google Scholar 

  • Sayers, C. M., 1991, Fluid flow in a porous medium containing partially closed fractures,Transport in Porous Media 6, 331–336.

    Google Scholar 

  • Struble, L. J., Stutzman, P. E., and Fuller, E. R., 1989, Microstructural aspects of the fracture of hardened cement paste,J. Am. Ceram. Soc. 72, 2295–2299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DaÏan, JF., Saliba, J. Transient moisture transport in a cracked porous medium. Transp Porous Med 13, 239–260 (1993). https://doi.org/10.1007/BF00622445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00622445

Key words

Navigation