Advertisement

Transition Metal Chemistry

, Volume 11, Issue 9, pp 351–355 | Cite as

Micellar effect upon the reaction of tris(4,7-diphenyl-1,10-phenanthrolinedisulphonato)iron(II) ion with hydroxide in water

  • Francisco Ortega
  • Elvira Rodenas
Full Papers

Summary

Reaction of tris(4,7-diphenyl-1,10-phenanthrolinedisulphonato)iron(II) ion with hydroxide ion is strongly accelerated by cationic micellar systems. Kinetics both in water and in cationic micelles are consistent with a mechanism of consecuive reactions with a reversible step, and the rate constants have been determined. Results in micelles are explained in terms of thepseudo-phase ion-exchange and mass-action kinetics models, and they show that micelles speed the reaction by an authentic catalytic effect by stabilization of transition state of the reaction.

Keywords

Iron Physical Chemistry Hydroxide Inorganic Chemistry Transition State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. S. Romsted,Micellization, Solubilization and Microemulsions, K. L. Mittal (Ed.) Plenum Press, New York, 1977, p. 509.Google Scholar
  2. (2).
    L. S. Romsted,Surfactants in Solution, K. L. Mittal and B. Lindman (Eds.), Plenum Press, New York, 1984, p. 1015.Google Scholar
  3. (3).
    C. A. Bunton, E. Rodenas and J. R. Moffatt,J. Am. Chem. Soc., 102, 2053 (1982).Google Scholar
  4. (4).
    E. Rodenas and S. Vera,J. Phys. Chem., 89, 513 (1985).Google Scholar
  5. (5).
    J. R. Cho and H. Morawetz,J. Am. Chem. Soc., 94, 579 (1956).Google Scholar
  6. (6).
    S. Diekman and J. Frahm,J. Chem. Soc., Faraday I, 75, 2199 (1979).Google Scholar
  7. (7).
    J. M. Blandamer, J. Burgess and P. Wellings,Transition Met. Chem., 6, 364 (1981).Google Scholar
  8. (8).
    S. L. Holt (Ed.),Inorganic Reactions in Organized Media, A.C.S. Symposium Series Washington, 1982.Google Scholar
  9. (9).
    J. Holzwarth, W. Knoche and B. H. Robinson,Ber. Bunsen Ges. Phys. Chem., 82, 1001 (1978).Google Scholar
  10. (10).
    E. Pelizzeti and E. Pramauro,Inorg. Chem., 18, 882 (1978).Google Scholar
  11. (11).
    F. Ortega and E. Rodenas,Transition Met. Chem., 9, 331 (1984).Google Scholar
  12. (12).
    F. Ortega and E. Rodenas,J. Phys. Chem., in press.Google Scholar
  13. (13).
    E. Rodenas and F. Ortega,J. Phys. Chem., 90, 2408 (1986).Google Scholar
  14. (14).
    F. M. Menger and C. E. Portnoy,J. Am. Chem. Soc., 89, 4698 (1967).Google Scholar
  15. (15).
    C. A. Bunton,Catal. Rev.-Sci. Eng., 83, 680 (1979).Google Scholar
  16. (16).
    C. A. Bunton, L. S. Romsted and G. Savelli,J. Am. Chem. Soc., 101, 253 (1979).Google Scholar
  17. (17).
    L. S. Romsted,Ph.D. Thesis, Indiana University, Bloomington, IN 1975.Google Scholar
  18. (18).
    H. Al-Lohedan, C. A. Bunton and L. S. Romsted,J. Phys. Chem., 85, 2123 (1981).Google Scholar
  19. (19).
    C. A. Bunton, L. H. Gan, J. R. Moffatt, L. S. Romsted and G. Savelli,J. Phys. Chem., 85, 4118 (1981).Google Scholar
  20. (20).
    C. Otero and E. Rodenas,Can. J. Chem., 63, 2892 (1985).Google Scholar
  21. (21).
    E. Rodenas,An. Quim., 79, 638 (1983).Google Scholar
  22. (22).
    F. Ortega and E. Rodenas, unpublished results.Google Scholar
  23. (23).
    E. Rodenas and S. Maestro, submitted for publication inAn. Quim. Google Scholar
  24. (24).
    S. Vera and E. Rodenas,Tetrahedron, 42, 143 (1986).Google Scholar
  25. (25).
    D. Stigter,Prog. Colloid Polym. Sci., 65, 45 (1978).Google Scholar
  26. (26).
    E. Duynstee and E. Grunwald,J. Am. Chem. Soc., 81, 4540 (1958).Google Scholar

Copyright information

© VCH Verlagsgesellschaft mbH 1986

Authors and Affiliations

  • Francisco Ortega
    • 1
  • Elvira Rodenas
    • 1
  1. 1.Department of Physical ChemistryUniversity of Alcalá de HenaresMadridSpain

Personalised recommendations