Journal of Applied Electrochemistry

, Volume 15, Issue 2, pp 167–173 | Cite as

Electrochemical oxidation of aliphatic hydrocarbons promoted by inorganic radicals. I. OH radicals

  • Renato Tomat
  • Adelio Rigo
Papers

Abstract

The OH initiated oxidation of aliphatic hydrocarbons by the simultaneous electrochemical reduction of O2 and of Fe(III) at controlled potential was investigated in the liquid phase over a Fe(III) concentration range 0.5–5 mM. OH radicals were generated by the reaction: Fe(II)+H2O2→Fe(III)+.OH+OH

The compounds studied were the linear alkane hydrocarbons from C5 to C10 and 3-methyl pentane. The results showed that the ketones are the only reaction products and that the yields decrease with increasing number of carbonium atoms of the hydrocarbon. Decreasing yields were also observed with increasing Fe(III) concentration.

Keywords

Oxidation Physical Chemistry H2O2 Hydrocarbon Liquid Phase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Tomat and E. Vecchi,J. Appl. Electrochem. 1 (1971) 185.Google Scholar
  2. [2]
    R. Tomat and A. Rigo,ibid. 6 (1976) 257.Google Scholar
  3. [3]
    Idem, ibid. 9 (1979) 301.Google Scholar
  4. [4]
    Idem, ibid. 14 (1984) 1.Google Scholar
  5. [5]
    Idem, ibid. 10 (1979) 549.Google Scholar
  6. [6]
    C. Walling,Accounts Chem. Res. 8 (1975) 125.Google Scholar
  7. [7]
    J. F. Word and L. S. Myers,Radiation Res. 26 (1965) 483.Google Scholar
  8. [8]
    K. R. Darnall, R. Atkinson and J. N. Pitts, Jr,J. Phys. Chem. 82 (1978) 1581.Google Scholar
  9. [9]
    A. C. Lloyd, K. R. Darnall, A. M. Winer and J. N. Pitts, Jr,ibid. 80 (1976) 789.Google Scholar
  10. [10]
    D. C. Nonhebel and J. C. Walton, in ‘Free Radical Chemistry’, (Cambridge University Press, Cambridge, 1974) Chap. 6, p. 128.Google Scholar
  11. [11]
    C. Walling, G. M. El-Taliawi and R. A. Johnson,J. Amer. Chem. Soc. 96 (1974) 133.Google Scholar
  12. [12]
    N. R. Greiner,J. Chem. Phys. 46 (1967) 3389.Google Scholar
  13. [13]
    Idem, ibid. 53 (1970) 1070.Google Scholar
  14. [14]
    G. E. Adams and R. L. Willson,Trans. Faraday Soc. 65 (1969) 2981.Google Scholar
  15. [15]
    D. Suryanarayana, W. Chamul and L. Kevan,J. Phys. Chem. 86 (1982) 4822.Google Scholar
  16. [16]
    M. N. Schuchmann and C. von Sonntag,ibid. 86 (1982) 1995.Google Scholar
  17. [17]
    E. Bothe and D. Schulte-Frohlinde,Z. Naturforsch. B 33 (1978) 786.Google Scholar
  18. [18]
    M. N. Schuchmann and C. von Sonntag,J. Phys. Chem. 83 (1979) 780.Google Scholar
  19. [19]
    B. C. Gilbert, R. G. G. Holmes, H. A. M. Lane and R. O. C. Normal,J. Chem. Soc. Perkin Trans. 2 (1976) 1047.Google Scholar
  20. [20]
    M. N. Schuchmann and C. von Sonntag,J. Photochem. 16 (1981) 289.Google Scholar
  21. [21]
    W. T. Dixon and R. O. C. Norman,J. Chem. Soc. (1963) 3119.Google Scholar
  22. [22]
    J. K. Kochi,J. Amer. Chem. Soc. 84 (1962) 2785.Google Scholar
  23. [23]
    R. Kh. Freidlina and A. B. Terent'ev, in ‘Advances in Free Radical Chemistry’ Vol. 6, edited by G. H. Williams (Heyden & Son Ltd, London, 1980).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • Renato Tomat
    • 1
  • Adelio Rigo
    • 2
  1. 1.Istituto di Polarografia ed ElettrochimicaPreparativa del CNRPadovaItaly
  2. 2.Istituto di Patologia GeneraleUniversità di PadovaPadovaItaly

Personalised recommendations