Skip to main content
Log in

Metal complexes of hybrid oxygen-arsenic ligands. Part V. A study of the products fromo-R2AsC6H4CO2M and CrO3 (M = H)/trans-[CrCl2(OH2)4]Cl · 2H2O (M = Na) in acetone

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

A change of the reported medium of reaction oftrans- [CrCl2(OH2)4]Cl · 2H2O witho-R2AsC6H4CO2M (M = Na), from 95% ethanol to acetone, results in the change of an hydroxo — to an oxo — group (R = Ph), in the number of water molecules (R = Et or C6H11) and/or of ligand molecules (R =p-tolyl) in chromium(III)-arsine complexes. However, for R = Me, the same complex is obtained in each case. I.r. spectral data of these complexes favour the chelation of the carboxylate ion and non-coordination of arsenic(III) except for CrO(o-Ph2AsC6H4CO2) · 2.5 H2O in which arsenic(III) of the monotertiary arsine group appears to coordinate to chromium(III). This would seem to be the first example of this type. On the other hand, the reaction of CrO3 witho-R2As- C6H4CO2M (M = H) in 1∶4.5 molar ratio in acetone yields only one type of complex,viz., [Cr3O3(o-R2As(O)C6H4-CO2)2(o-R2AsC6H4CO2)(H2O)6] · n H2O (n = 2, R = Me, C6H11 or Ph; n = O, R = Et). The arsine oxide molecules appear to chelate through As = 0 and the carboxylate oxygens while the arsine ligand binds only through the carboxylate oxygens leaving arsenic(III) uncoordinated as reported for the complexes obtained from the same reactants in 95% ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. McAuliffe,Transition Metal Complexes of Phosphorus, Arsenic and Antimony Ligands, Macmillan 1973; N. V. Maatschappij, G. C. Lawrence, H. S. Lynn and D. M. Richard,Ger. Pat. 1, 186455 (1965). C.A. 62; 16054f; R. S. Nyholm and G. J. Sutton,J. Chem. Soc., 560 (1958); K. Gustav and H. Moerke,Z. Chemie, 9, 32 (1969); R. O. Feltham and W. Silverthorn,Inorg. Chem., 7, 1154 (1968); J. Lewis, R. S. Nyholm, C. S. Pande, S. S. Sandhu and M. H. B. Stiddard,J. Chem. Soc., 3009 (1964), R. J. H. Clark, M. L. Greenfield and R. S. Nyholm,J. Chem. Soc. A, 1254 (1966).

  2. L. R. Gray, A. L. Hale, W. Levason, F. P. McCullough and M. Webster,J. Chem. Soc., Dalton Trans., 47 (1984).

  3. A. Tzchach and H. Nindel,J. Organometal. Chem., 24, 159 (1970).

    Google Scholar 

  4. S. S. Parmar and H. Kaur,Transition Met. Chem., 7, 79 (1982).

    Google Scholar 

  5. G. N. Reilly, R. W. Schmid and F. S. Sadek,J. Chem. Educ., 36, 555 (1959).

    Google Scholar 

  6. S. S. Parmar, H. K. Saluja and H. K. Bathla, unpublished work.

  7. W. R. Cullen and P. S. Dhaliwal,Can. J. Chem., 45, 719 (1967).

    Google Scholar 

  8. F. F. Blicke and L. D. Powers,J. Am. Chem. Soc., 54, 3353 (1932).

    Google Scholar 

  9. D. M. Adams,Metal Ligand and Related Vibrations, Arnold, London, 1967, p. 238.

    Google Scholar 

  10. K. Nakamoto,Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York (1978).

    Google Scholar 

  11. J. Fujika, K. Nakamoto and M. Kobayashi,J. Am. Chem. Soc., 78, 3963 (1956).

    Google Scholar 

  12. M. D. Taylor, C. P. Carter and C. I. Wynter,J. Inorg. Nucl. Chem., 30, 1503 (1968); T. J. Delia, M. A. Little and D. X. West,J. Inorg. Nucl. Chem., 35, 1400 (1973).

    Google Scholar 

  13. S. S. Parmar and H. K. Bathala,Indian J. Chem., (1985), in press.

  14. S. S. Parmar and H. Kaur,Polyhedron, 1, 667 (1982).

    Google Scholar 

  15. S. S. Parmar, H. K. Bharj and M. L. Sehgal,Polyhedron, 4, 959 (1985).

    Google Scholar 

  16. D. J. Hodgson,Prog. Inorg. Chem., 19, 173 (1975).

    Google Scholar 

  17. A. Earnshaw and J. Lewis,J. Chem. Soc., 396 (1961).

  18. C. A. McAuliffe and W. D. Perry,Inorg. Nucl. Chem. Lett., 10, 367 (1974).

    Google Scholar 

  19. T. Morishita, K. Hori, E. Kyuno and R. Tschida,J. Bull. Chem. Soc., 38, 1276 (1965).

    Google Scholar 

  20. D. J. Hewkin and W. P. Griffith,J. Chem. Soc. A, 472 (1966) and refs. therein.

    Google Scholar 

  21. E. Konig,Structure and Bonding, 9, 175 (1971).

    Google Scholar 

  22. L. Dubichi and R. L. Martin,Aust. J. Chem., 23, 215 (1970).

    Google Scholar 

  23. M. Ciampolini,Structure and Bonding, 6, 52 (1969).

    Google Scholar 

  24. F. H. Westheimer,Chem. Rev., 45, 419 (1949).

    Google Scholar 

  25. K. B. Wiberg,Oxidation by Chromic acid and Chromyl Compounds', in Oxidation inOrganic Chemistry, Part 4, Acadamic Press, New York (1965).

    Google Scholar 

  26. J. G. Mason and A. D. Rowalak,Inorg. Chem., 3, 1248 (1964).

    Google Scholar 

  27. A. Haim,Prog. Inorg. Chem., 30, 273 (1983).

    Google Scholar 

  28. I. M. Kolthoff and M. A. Fineman,J. Phys. Chem., 60, 1383 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmar, S.S., Bharaj, H.K. & Saighal, M.L. Metal complexes of hybrid oxygen-arsenic ligands. Part V. A study of the products fromo-R2AsC6H4CO2M and CrO3 (M = H)/trans-[CrCl2(OH2)4]Cl · 2H2O (M = Na) in acetone. Transition Met Chem 11, 283–286 (1986). https://doi.org/10.1007/BF00620646

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620646

Keywords

Navigation