Applied Physics A

, Volume 42, Issue 3, pp 213–217 | Cite as

Electron transport in corona charged 12 μm teflon FEP with saturable deep traps

  • O. N. OliveiraJr.
  • G. F. Leal Ferreira
Solids and Materials


Surface-potential measurements carried out in negatively corona charged 12 μm samples of fluorethylenepropylene (Teflon FEP) showed the following characteristics: 1) with a constant charging current, the potential initially rises linearly, and then sublinearly; 2) the potential saturates irrespectively of the charging process and 3) practically no potential decay is observed after switching off the corona. These results have been interpreted in terms of an usual model (field-independent trapping time) for charge transport in insulators, with saturable deep traps in both surface and bulk of the sample and a relatively high electron mobility in order to prevent free-space charge accumulation. The partial differential equations derived from the model are numerically solved and it was found that only the product of the mobility μ with the trapping time is relevant to the fitting of experimental results, provided that μ>10−8 cm2/Vs. A field-dependent trapping time model leads to poorer fittings.


72.20Jv 73.60Hy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Giacometti, G.F. Leal Ferreira, B. Gross: Phys. Stat. Solidi (a)88, 297 (1985)Google Scholar
  2. 2.
    B. Gross, J.A. Giacometti, G.F. Leal Ferreira: Conf. Electrical Insulation and Dielectric Phenomena, Annual Report (IEEE, Piscataway, NJ 1981) p. 39Google Scholar
  3. 3.
    B. Gross, J.A. Giacometti, G.F. Leal Ferreira: IEEE Trans. Nucl. Sci.28, 4513 (1981)Google Scholar
  4. 4.
    B. Gross, J.A. Giacometti, G.F. Leal Ferreira, O.N. Oliveira Jr.: J. Appl. Phys.56, 1487 (1984)Google Scholar
  5. 5.
    R.E. Collins: J. Appl. Phys.51, 2973 (1980)Google Scholar
  6. 6.
    C.X. Cardoso, M.Sc. Thesis: Instituto de Física e Química de São Carlos, Universidade de São Paulo (1986)Google Scholar
  7. 7.
    G.W. Trichel; Phys. Rev.54, 1078 (1983)Google Scholar
  8. 8.
    G.D. Smith:Numerical Solutions of Partial Differential Equations (Oxford U. Press, Oxford 1965)Google Scholar
  9. 9.
    W.F. Ames:Numerical Methods for Partial Differential Equations (Academic, New York 1977) pp. 165–223Google Scholar
  10. 10.
    G.F. Leal Ferreira, L.N. Oliveira, O.N. Oliveira, Jr., J.A. Giacometti: IEEE Trans. EI-21, 275 (1986)Google Scholar
  11. 11.
    B. Gross, J.A. Giacometti, and G.F. Leal Ferreira — Proc. Sec. Japan-Brazil of Symposium on Science and Technology (1980) p. 166Google Scholar
  12. 12.
    H. Von Seggern, J.E. West and R.A. Kubli: Rev. Sci. Instrum.55, 964 (1984)Google Scholar
  13. 13.
    K. Hayashi, K. Yoshino and Y. Inuishi: Jpn. J. Appl. Phys.14, 39 (1975)Google Scholar
  14. 14.
    P.W. Chudleigh: J. Appl. Phys.48, 459 (1977)Google Scholar
  15. 15.
    H. Von Seggern: J. Appl. Phys.50, 7039 (1979)Google Scholar
  16. 16.
    H. Von Seggern: Conference on Electrical Insulation and Dielectric Phenomena, Annual Report,1980, USA, p. 345Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • O. N. OliveiraJr.
    • 1
  • G. F. Leal Ferreira
    • 1
  1. 1.Institute of Physics and Chemistry of São CarlosUniversity of São PauloSão Carlos - S.P.Brazil

Personalised recommendations