Skip to main content
Log in

Neutron damage and annealing studies of copper-doped silicon solar cells

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The effects of Cu-doping, oxygen and dopant on the fast neutron radiation damage of silicon solar cells are studied in this paper. The diffusion length damage coefficientK L is defined as KL= (1/L 2i − 1/L 2o −1= Δ(1/L2−1. The Δ(1/L2) values of n/p-type cells, measured at 300 and 80K, are smaller by about one order in magnitude than those of p/n-type cells. Characteristic curves of Δ(1/L 2) values versus total neutron flux of p/n, n/p and copper-doped n/p-type cells begin to deviate from a 45° straight line around a total neutron flux of 1012 to 1013 n cm−2. The effect of copper-doping on the radiation resistant property is observed with high resistivity bulk n/p-type (20 to 40 Ω-cm) cells, but not with low resistivity bulk n/p-type (10 Ω-cm) cells at 300K. Values of Δ(1/L 2) versus neutron flux, measured at 80K, are not affected by copper-doping, bulk dopant and oxygen concentration in the bulk region of n/p-type cells. The isochronal annealing of silicon solar cells depends on the total neutron flux, copper-doping and carrier injection during the annealing process. Namely, copper-doping and carrier injection enhance the annealing process of the neutron-induced defect clusters in n/p-type cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wolf andG. J. Brucker,Energy Conversion 11 (1971)75.

    Google Scholar 

  2. I. Tagoshima et al. ‘Lithium-doped silicon solar cell’, Eighth Int. Symp. Space Tech. and Science (1969).

  3. E. J. Stofel, T. B. Stewart andJ. R. Ornelas IEEE Trans. NS-16 (1969).

  4. J. Cheng andLori,Phys. Rev. 171 (1968) 856.

    Google Scholar 

  5. O. L. Curtis,IEEE Trans. NS-13 (1966) 33.

    Google Scholar 

  6. K. Nakashima andY. Inuoshi ‘Radiation damage in silicon, Int. Symp. Lattice Defects in Semiconductors’, Tokyo (1966). Ed.R. R. Hashiguchi, Univ. of Tokyo Press (1968) p. 316;J. Phys. Soc. Japan 27 (1969) 397.

    Google Scholar 

  7. B. L. Gregory,IEEE Trans. NS-16 (1969) 53.

    Google Scholar 

  8. B. R. Gossick,J. Appl. Phys. 30 (1959) 1214.

    Google Scholar 

  9. G. J. Brucker, ‘Radiation damage in Li-doped solar cells bombarded by neutrons and protons’, Conf. Phys. Appl. of Li Diff. Silicon, p. 38, Goddard Space Flight Center Greenbelt, Maryland (1968).

    Google Scholar 

  10. A. Usami,Japan J. Appl. Phys. 9 p. 1063.

  11. Idem, J. Nucl. Sci. and Tech. 9 (1972) 528.

    Google Scholar 

  12. Idem, Solid State Elect. 13 (1970) 1202.

    Google Scholar 

  13. Y. Kato andA. Usami,Electron. Lett. 9 (1973) 18.

    Google Scholar 

  14. A. Usami,Trans. Inst. Electronic Comm. Engrs Japan (Electronics and Communications Japan) 54-C (1971) 404.

    Google Scholar 

  15. A. Usami andY. Tokuda,J. Appl. Phys. 45 (1974) 2823.

    Google Scholar 

  16. T. Tanaka andY. Inuishi,J. Phys. Soc. Japan 19 (1964) 167.

    Google Scholar 

  17. H. J. Sein,Phys. Rev. 163 (1967) 801;J. Appl. Phys. 39 (1968) 5283.

    Google Scholar 

  18. H. J. Stein,Appl. Phys. Lett. 15 (1969) 61.

    Google Scholar 

  19. C. E. Barnes,IEEE Trans. NS-16 (1969) 28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usami, A. Neutron damage and annealing studies of copper-doped silicon solar cells. Opt Quant Electron 8, 15–22 (1976). https://doi.org/10.1007/BF00620435

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620435

Keywords

Navigation