Optical and Quantum Electronics

, Volume 14, Issue 5, pp 375–389 | Cite as

Bistable operation of a GaAs-AlGaAs diode laser coupled to an external resonator of narrow spectral bandwidth

  • P. Glas
  • R. Müller


The influence of an external dispersive resonator on the emission properties of a double heterostructure semiconductor laser operating at room temperature has been investigated. The proper design of the external resonator (frequency selectivity and efficient back-coupling of the radiation leaving the diode) demonstrates that a laser with optical feedback can show bistability and hysteresis phenomena. The dispersive bistability has its origin in the dependence of the refractive index on carrier density, temperature and optical power. Hysteresis curves have been measured by changing the injection current or by tuning the dispersive element. We have found a threshold in the injection current for the onset of the hysteretic behaviour. Moreover, a theoretical model has been established to explain the essential features of the experimental results. Hysteresis cycles for different experiments have been calculated.


Carrier Density Optical Power Semiconductor Laser Injection Current Emission Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. P. Bogatov, P. G. Eliseev, L. P. Ivanov, A. S. Logginov, M. A. Manko andK. Ya. Senatorov,IEEE J. Quant. Elect. QE-9 (1973) 392.Google Scholar
  2. 2.
    K. Kobayashi,Trans. IECE Japan E59 (1976) 8.Google Scholar
  3. 3.
    N. Chinone, K. Aiki andR. Ito,Appl. Phys. Lett. 33 (1978) 990.Google Scholar
  4. 4.
    H. Eichler andG. Herziger,Z. Angew. Phys. 23 (1967) 297.Google Scholar
  5. 5.
    M. Nakamura, K. Aiki, N. Chinone, R. Ito andJ. Umeda,J. Appl. Phys. 49 (1978) 4644.Google Scholar
  6. 6.
    T. L. Paoli,Appl. Phys. Lett. 34 (1979) 652.Google Scholar
  7. 7.
    R. Lang andK. Kobayashi,IEEE J. Quant. Elect. QE-16 (1980) 347.Google Scholar
  8. 8.
    V. Yu. Bazhenov, A. P. Bogatov, P. G. Eliseev, O. G. Okhotnikov, G. T. Pak, M. P. Rakhvalsky, M. S. Soskin, V. B. Taranenko andK. A. Khairetdinov,Kvant. Elekt. 8 (1981) 853.Google Scholar
  9. 9.
    H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner andW. Wiegmann,Appl. Phys. Lett. 35 (1979) 451.Google Scholar
  10. 10.
    D. A. B. Miller, S. D. Smith andA. Johnston,ibid 35 (1979) 658.Google Scholar
  11. 11.
    F. S. Felber andJ. H. Marburger,ibid 28 (1976) 731.Google Scholar
  12. 12.
    K. H. Levin andC. L. Tang,ibid 34 (1979) 386.Google Scholar
  13. 13.
    H. Bachert, A. P. Bogatov, P. Glas, P. G. Eliseev, O. G. Okhotnikov, G. T. Pak andK. A. Khairetdinov, 7th IEEE Int. Semicond. Laser Conference, 10–11 September 1980, Brighton, UK.Google Scholar
  14. 14.
    H. Kressel andJ. K. Butler, ‘Semiconductor Lasers and Heterojunction LEDs’ (Academic Press, New York, 1977) pp. 160–1.Google Scholar
  15. 15.
    F. Stern,Phys. Rev. 133 (1964) A1653.Google Scholar
  16. 16.
    J. P. Van Der Ziel,IEEE J. Quant. Elect. QE-15 (1979) 1277.Google Scholar
  17. 17.
    G. H. B. Thompson,Opto-Elect. 4 (1972) 257.Google Scholar
  18. 18.
    H. C. Casey andM. B. Panish, ‘Heterostructure Lasers A’ (Academic Press, New York, 1978) p. 231.Google Scholar
  19. 19.
    W. B. Joyce andR. W. Dixon,J. Appl. Phys. 46 (1975) 855.Google Scholar
  20. 20.
    F. R. Nash,ibid 44 (1973) 4696.Google Scholar
  21. 21.
    R. Feder,ibid 39 (1968) 4871.Google Scholar
  22. 22.
    B. W. Hakki,ibid 44 (1973) 5021.Google Scholar
  23. 23.
    A. Klehr, private communication.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • P. Glas
    • 1
  • R. Müller
    • 1
  1. 1.Zentralinstitut für Optik und SpektroskopieAkademie der Wissenschaften der DDRBerlin

Personalised recommendations