Skip to main content
Log in

A comparative study of intensity pulsations in a double heterostructure AlxGa1−xAs laser with and without an external resonator present

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper describes the pulsing behaviour of Al x Ga1−x As double heterostructure (DH) lasers with and without an external dispersive resonator present. We have investigated only those lasers which show self-sustained oscillations under dc excitation. For the solitary diode we have found pulses possessing a width at half-power points, Δτ p, where Δτ p=0.9 ns and a repetition frequency,f os, ranging from 176 to 775 MHz depending on injection currentJ. Introducing a correlation time,t c, as a measure of the stability of the pulse height we have obtained 5 <t c < 40 ns. The maximum value oft c occurs in the vicinity of the crossing point off 2os andτ −2c , whereτ c is the effective carrier lifetime. Output pulsations are accompanied by spectral shifts of the longitudinal diode cavity modes. The frequency halfwidth, Δν Hw, ranging from 30 to 90 GHz is closely related to the maximum pulse power,P max. Coupling the laser diode to an external resonator, pulse widths, oscillation frequencies and correlation times have been determined as functions ofJ/J th (J th is the threshold injection current), provided the photon roundtrip time is nearly equal toτ c and the equivalent reflection factorR * of the external resonator isR * ∼ 0.87. By evaluating the experimental findings pulsing under dc excitation may be described, without a detailed knowledge of the reasons leading thereto, by using the concepts of a nonstationary quality factorQ ns and time-dependent resonator losses characterized by Δν Hwτ p. Oscillations become self-sustained forQ ns=const., i.e. the minimum photon density with which the pulses start to grow has to be time and excitation independent, in this casef 2os is proportional toJ/J th as well as Δτ p to (J/J th −1)−1/2.

For certain ranges of injection current a double hysteresis has been found. In the upper branch of this hysteresis the output is continuous wave, occurring in a single mode of the coupled system. All other parts of theP-J curve are characterized by output pulsations. The carrier trap model proposed by Copeland allows a qualitative description of the experiments including calculations of the electron capture cross-sectionσ 0 and the minimum pulse width Δτ p,min estimated asσ 0=3.6×10−16cm2 and Δτ p, min, ∼-0.9 ns. According to our measurements the dynamic loss originating in carrier consumption/ release due to traps is responsible for pulsing behaviour and double-switching along the hysteresis curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Statz andG. De Mars, in ‘Quantum Electronics’, edited by C. H. Townes (Columbia University Press, New York, 1960) p. 530.

    Google Scholar 

  2. K. Shimoda,Proc. Opt. Masers (1963) 95.

  3. J. P. Van Der Ziel, J. L. Merz andT. L. Paoli J. Appl. Phys. 50 (1979) 4620.

    Google Scholar 

  4. H. Weber, PhD Thesis, Tu, Berlin (1965).

  5. P. Glas, internal report 1981, unpublished.

  6. N. G. Basov,IEEE J. Quantum Electron. QE-4 (1968) 855.

    Google Scholar 

  7. V. V. Nikitin, A. S. Seminov andV. P. Strakov,J. Expt. Theoret. Phys. Lett. 9 (1969) 313.

    Google Scholar 

  8. M. J. Adams,Phys. Status. Solidi A1 (1970) 143.

    Google Scholar 

  9. Idem, Opto-Electronics 5 (1973) 207.

    Google Scholar 

  10. J. A. Copeland,Electron. Lett. 14 (1978) 809.

    Google Scholar 

  11. D. Kato,Appl. Phys. Lett. 31 (1977) 588.

    Google Scholar 

  12. T. L. Paoli andJ. E. Ripper,Phys. Rev. Lett. 21 (1969) 1085.

    Google Scholar 

  13. K. Kobayashi, H. Yonezu, F. Saito andY. Nannichi,Appl. Phys. Lett. 19 (1971) 323.

    Google Scholar 

  14. L. Figueroa,IEEE J. Quantum Electron. QE-17 (1981) 1074.

    Google Scholar 

  15. J. C. Dyment andK. D. Chik,J. Appl. Phys. 51 (1980) 5252.

    Google Scholar 

  16. P. Glas andR. Müller,Opt. Quantum Electron. 14 (1982) 375.

    Google Scholar 

  17. A. Olsson andC. L. Tang,Appl. Phys. Lett. 39 (1981) 24.

    Google Scholar 

  18. M. W. Fleming andA. Mooradian,IEEE J. Quantum Electron. QE-17 (1981) 44.

    Google Scholar 

  19. C. Harder, K. Y. Lau andA. Yariv,Appl. Phys. Lett. 39 (1981) 382.

    Google Scholar 

  20. Idem, ibid. 40 (1982) 369.

    Google Scholar 

  21. R. Lang andK. Kobayashi,IEEE J. Quantum Electron. QE-16 (1980) 347.

    Google Scholar 

  22. P. Glas, R. Müller andA. Klehr,Opt. Commun. 44 (1983) 196.

    Google Scholar 

  23. J. A. Copeland,J. Appl. Phys. 51 (1981) 1919.

    Google Scholar 

  24. H. S. Sommers andD. O. North,Solid State Electron. 19 (1976) 675.

    Google Scholar 

  25. D. D. Cook andF. R. Nash,J. Appl. Phys. 46 (1975) 1660.

    Google Scholar 

  26. P. Glas, P. Hartwig andG. Erbert,Opt. Quantum Electron. 16 (1984) 297.

    Google Scholar 

  27. R. Müller andP. Glas,Zh. Phys. B — Condensed matter 54 (1984) 271.

    Google Scholar 

  28. J. A. Copeland,IEEE. J. Quantum Electron. QE-16 (1980) 721.

    Google Scholar 

  29. B. W. Hakki,J. Appl. Phys. 50 (1979) 5630.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glas, P., Klehr, A. & Hartwig, P. A comparative study of intensity pulsations in a double heterostructure AlxGa1−xAs laser with and without an external resonator present. Opt Quant Electron 17, 175–186 (1985). https://doi.org/10.1007/BF00620360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00620360

Keywords

Navigation