Advertisement

Applied Physics A

, Volume 35, Issue 1, pp 27–34 | Cite as

Characterisation of the interface between GaAs: Cr substrates andn-type epitaxial GaAs layers by infrared multiple interference analysis

  • U. Nowak
  • J. Saalmüller
  • W. Richter
  • M. Heyen
  • H. Janz
Contributed Papers

Abstract

Infrared reflectivity measurements on vapour phase grownn-GaAs epitaxial layers (n=7×1016...5×1018 cm−3) deposited on semi-insulating GaAs:Cr substrates show interference structures whose strength cannot be explained by the interference pattern of a simple two layer system. Assuming a third very thin (0.4 μm) interfacial layer it is possible to describe the experimental results. For Te doping the carrier concentration in the interfacial film is higher than in the volume of the epitaxial layer; it is lower for Sn doping. The results of this nondestructive optical method were confirmed by conductivity measurements while etching the sample. The origin of the interfacial layer is discussed in terms of non-steady state conditions at the beginning of the epitaxial growth.

PACS

07.65G 42.85 68.48 68.55 73.60F 78.30 78.65 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.g., E.D. Palik, R.T. Holm: “Optical Characterization of Semiconductors” inNondestructive Evaluation of Semiconductor Material and Devices, ed. by Jay N. Zemel (Plenum Press, New York 1979) p. 315Google Scholar
  2. 2.
    K.H. Nichols, R.E. Goldwasser, C.M. Wolfe: Appl. Phys. Lett.36, 601 (1980)Google Scholar
  3. 3.
    F. Alexandre, C. Raisin, M.I. Abdalla, A. Brenac, J.M. Masson: J. Appl. Phys.51, 4296 (1980)Google Scholar
  4. 4.
    J.J. Harris, B.A. Joyce, J.P. Gowers, J.H. Neave: Appl. Phys. A28, 63 (1982)Google Scholar
  5. 5.
    A. Rockett, T.J. Drummond, J.E. Greene, H. Morkoc: J. Appl. Phys.53, 7085 (1982)Google Scholar
  6. 6.
    E.g. O.S. Heavens:Optical Properties of Thin Solid Films, (Dover, New York 1965) p. 36Google Scholar
  7. 6a.
    H.M. Liddel:Computer-aided Techniques for the Design of Multilayer Filters (Adam Hilgers, Bristol 1961)Google Scholar
  8. 6b.
    P. Rouard: Ann. Phys.7, 291 (1937)Google Scholar
  9. 7.
    E.g. M. Hass: InSemiconductors and Semimetals 3, 3 (Academic Press, New York 1967)Google Scholar
  10. 8.
    J.T. Houghton, S.D. Smith:Infra-Red Physics (Clarendon Press, Oxford 1966)Google Scholar
  11. 8a.
    J.M. Ziman:Principles of the Theory of Solids (Cambridge University Press, London 1972)Google Scholar
  12. 8b.
    P. Grosse:Freie Elektronen in Festkörpern (Springer, Berlin, Heidelberg, New York 1979)Google Scholar
  13. 9.
    J. Esteve, F. Ponse, K.-H. Bachem: Thin Solid Films82, 187 (1981)Google Scholar
  14. 10.
    J. Korec, M. Heyen: J. Cryst. Growth60, 197 (1982)Google Scholar
  15. 11.
    J. Korec, D. Grundmann, M. Heyen: J. Electrochem. Soc.131, 1433 (1984)Google Scholar
  16. 12.
    M. Heyen, H. Bruch, K.-H. Bachem, P. Balk: J. Cryst. Growth42, 127 (1977)Google Scholar
  17. 13.
    C.E.C. Wood, B.A. Joyce: J. Appl. Phys.49, 4854 (1978)Google Scholar
  18. 14.
    K. Ploog:Crystals: Growth, Properties and Applications 3, 73 (Springer, Berlin, Heidelberg, New York 1980)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • U. Nowak
    • 1
  • J. Saalmüller
    • 1
  • W. Richter
    • 1
  • M. Heyen
    • 2
  • H. Janz
    • 3
  1. 1.I. Physikalisches InstitutRWTH AachenAachenGermany
  2. 2.Institute of Semiconductor ElectronicsRWTH AachenAachenGermany
  3. 3.Abteilung FestkörperphysikUniversität UlmUlmGermany

Personalised recommendations