Optical and Quantum Electronics

, Volume 15, Issue 1, pp 77–85 | Cite as

A numerical technique for the determination of propagation characteristics of inhomogeneous planar optical waveguides

  • J. P. Meunier
  • J. Pigeon
  • J. N. Massot
Papers

Abstract

A numerical method, using the Ritz-Galerkin approach has been applied to the problem of determining the propagation characteristics of inhomogeneous planar optical waveguides. It is shown that very accurate results are obtained for mode spectra and field distributions when compared with the predictions of other exact or approximate methods.

Keywords

Communication Network Propagation Characteristic Accurate Result Field Distribution Numerical Technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Tien,Rev. Mod. Phys. 49 (1977) 361.Google Scholar
  2. 2.
    T. Tamir, in ‘Integrated Optics: Topics in Apply Physics’ Vol. 7, 2nd ed. (Springer-Verlag, Berlin, 1979).Google Scholar
  3. 3.
    M. O. Vassel,JOSA 65 (1975) 1019.Google Scholar
  4. 4.
    L. M. Andrushko andO. N. Litvinenko,Radioelectron. Commun. Systems 2 20 (1977) 16.Google Scholar
  5. 5.
    E. M. Conwell,Appl. Phys. Lett. 23 (1973) 328.Google Scholar
  6. 6.
    H. Kirchhoff,AEU 26 (1972) 537.Google Scholar
  7. 7.
    P. M. Kolesnikov andI. P. Rudenok,Radio Eng. Electron. Phys. 24 (1979) 6.Google Scholar
  8. 8.
    V. P. Kalosha andA. P. Khapalyuk,ibid. 25 (1980) 36.Google Scholar
  9. 9.
    D. Marcuse,IEEE J. Quantum Electron. QE-9 (1973) 1000.Google Scholar
  10. 10.
    H. Blok,Radio Sci. 14 (1979) 333.Google Scholar
  11. 11.
    J. M. Arnold,J. Phys. A: Math. Gen. 13 (1980) 3057, 3083.Google Scholar
  12. 12.
    H. G. Unger, ‘Planar Optical Waveguides and Fibres’ (Clarendon Press, Oxford, 1977).Google Scholar
  13. 13.
    M. J. Adams, ‘An Introduction to Optical Waveguides’ (Wiley, New York, 1981).Google Scholar
  14. 14.
    E. Bahar andB. S. Agrawal,Radio Sci. 12 (1977) 611.Google Scholar
  15. 15.
    H. Ikuno,IEEE Trans. Microwave Theory Techn. MTT-26 (1978) 261.Google Scholar
  16. 16.
    A. Yata andH. Ikuno,Electron. Lett. 17 (1981) 115.Google Scholar
  17. 17.
    A. Gedeon,Opt. Commun. 12 (1974) 329.Google Scholar
  18. 18.
    J. Janta andJ. Čtyroký,ibid. 25 (1978) 49.Google Scholar
  19. 19.
    A. H. Hartog andM. J. Adams,Opt. Quant. Elect. 9 (1977) 223.Google Scholar
  20. 20.
    M. Hashimoto,IEEE Trans. Microwave Theory Techn. MTT-24 (1976) 559.Google Scholar
  21. 21.
    A. Kumar, K. Thyagarajan andA. K. Ghatak,IEEE J. Quantum Electron. (Corresp.) QE-10 (1974) 902.Google Scholar
  22. 22.
    I. Savatinova andE. Nadjakov,Appl. Phys. 8 (1975) 245.Google Scholar
  23. 23.
    J. F. Lotspeich,Opt. Commun. 18 (1976) 567.Google Scholar
  24. 24.
    A. Kumar andE. Khular,ibid. 27 (1978) 349.Google Scholar
  25. 25.
    E. Khular, A. Kumar, A. Sharma, I. C. Goyal andA. K. Ghatak,Opt. Quant. Elect. 13 (1981) 109.Google Scholar
  26. 26.
    E. F. Kuester andD. C. Chang,IEEE Trans. Microwave Theory Tech. MTT-23 (1975) 98.Google Scholar
  27. 27.
    M. Hashimoto,J. Appl. Phys. 50 (1979) 2512.Google Scholar
  28. 28.
    G. L. Yip andE. Colombini,Opt. Quant. Elect. 10 (1978) 353.Google Scholar
  29. 29.
    G. L. Yip andH. H. Yao,Electron. Lett. 17 (1981) 229.Google Scholar
  30. 30.
    Y. Suematsu andK. Furuya,IEEE Trans. Microwave Theory Techn. MTT-20 (1972) 524.Google Scholar
  31. 31.
    C. Pichot.Opt. Commun. 23 (1977) 285.Google Scholar
  32. 32.
    L. Mashev,Appl. Phys. 17 (1978) 189.Google Scholar
  33. 33.
    H. M. De Ruiter,JOSA 70 (1980) 1519.Google Scholar
  34. 34.
    M. J. Adams,Opt. Quant. Elect. 10 (1978) 17.Google Scholar
  35. 35.
    H. F. Taylor,IEEE J. Quantum Electron. QE-12 (1976) 748.Google Scholar
  36. 36.
    M. Geshiro, M. Ootaka, M. Matsuhara andN. Kumagai,ibid. QE-10 (1974) 647.Google Scholar
  37. 37.
    C. Yeh, K. Ha, S. B. Dong andW. P. Brown,Appl. Opt. 18 (1979) 1490.Google Scholar
  38. 38.
    N. Mabaya, P. E. Lagasse andP. Vandenbulcke,IEEE Trans. Microwave Theory Techn. MTT-29 (1981) 600.Google Scholar
  39. 39.
    J. P. Meunier, J. Pigeon andJ. N. Massot,Opt. Quant. Elect. 13 (1981) 71.Google Scholar
  40. 40.
    H. Kogelnik, in ‘Integrated Optics: Topics in Applied Physics’ Vol. 7, 2nd ed. (Springer-Verlag, Berlin, 1979).Google Scholar
  41. 41.
    R. D. Standley andV. Ramaswany,Appl. Phys. Lett. 25 (1974) 711.Google Scholar
  42. 42.
    R. A. Sammut andA. W. Snyder,Electron. Lett. 16 (1980) 32.Google Scholar
  43. 43.
    J. N. Massot, J. P. Meunier andJ. Pigeon, to be published.Google Scholar
  44. 44.
    G. Stewart, C. A. Millar, P. J. R. Laybourn, C. D. W. Wilkinson andR. M. Delarue,IEEE J. Quantum Electron. QE-13 (1977) 192.Google Scholar
  45. 45.
    P. K. Tien, S. Riva-Sanseverino andR. J. Martin,Appl. Phys. Lett. 24 (1974) 503.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • J. P. Meunier
    • 1
  • J. Pigeon
    • 1
  • J. N. Massot
    • 1
  1. 1.Laboratoire Traitement du Signal et Instrumentation, Equipe de Recherche Associée au CNRS, No. 996Université de Saint-Etienne, UER de SciencesSaint-EtienneFrance

Personalised recommendations