Advertisement

Optical and Quantum Electronics

, Volume 16, Issue 2, pp 109–115 | Cite as

Sum frequency beam analysis for the determination of the temporal characteristics of ultrashort light pulses

  • J. Janszky
  • G. Corradi
  • S. A. Arakelian
  • R. N. Gyuzalian
  • S. B. Sogomonian
Article

Abstract

An extension of the single-shot second harmonic beam method proposed earlier for picosecond pulse duration measurements is presented for the case of two incident pulses of differing frequencies, durations and transverse sizes. The solution of the wave equation for noncollinear sum frequency generation in a nonlinear crystal by two Gaussian, spatially limited ultrashort pulses is given. It is shown that the width (τ 1 2 2 2 )1/2 of the temporal cross-correlation function of the two pulses can be deduced from the spatial energy distribution of the sum frequency beam. The method can be used e.g. in the case of a relatively weak secondary pulse obtained in some nonlinear processes. Preliminary experimental results demonstrating the possibilities offered by the method are presented.

Keywords

Ultrashort Pulse Nonlinear Crystal Incident Pulse Picosecond Pulse Beam Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Zernike andJ. E. Midwinter, ‘Applied Nonlinear Optics’, (John Wiley and Sons, New York, 1973).Google Scholar
  2. 2.
    D. J. Bradley andG. A. C. New,Proc. IEEE 62 (1974) 313.Google Scholar
  3. 3.
    E. P. Ippen andC. V. Shank, in ‘Ultrashort light pulses’, (edited by S. L. Shapiro) (Springer-Verlag, Berlin, 1977).Google Scholar
  4. 4.
    M. Maier, W. Kaiser andJ. A. Giordmaine,Phys. Rev. Lett. 17 (1966) 1275.Google Scholar
  5. 5.
    J. Janszky, G. Corradi andR. N. Gyuzalian,Opt. Commun. 23 (1977) 293.Google Scholar
  6. 6.
    R. N. Gyuzalian, S. B. Sogomonian andZ. Gy. Horváth,ibid. 29 (1979) 239.Google Scholar
  7. 7.
    R. Wyatt andE. E. Marinero,Appl. Phys. 25 (1981) 297.Google Scholar
  8. 8.
    S. M. Saltiel, S. D. Savov, I. V. Tomov andL. S. Telegin,Opt. Commun. 38 (1981) 443.Google Scholar
  9. 9.
    J. Janszky, G. Corradi andR. N. Gyuzalian,Opt. Acta 29 (1982) 51.Google Scholar
  10. 10.
    C. Kolmeder, W. Zinth andW. Kaiser,Opt. Commun. 30 (1979) 453.Google Scholar
  11. 11.
    B. Kopainsky, W. Kaiser andK. H. Drexhage,ibid. 32 (1980) 451.Google Scholar
  12. 12.
    C. Kolmeder andW. Zinth,Appl. Phys. 24 (1981) 341.Google Scholar
  13. 13.
    T. Srinivasan, H. Egger, K. Boyer, H. Pummer, S. K. Rhodes, T. S. Luk andD. F. Muller in the Third Topical Meeting on Picosecond Phenomena, Garmisch-Partenkirchen, 16–18 June, 1982.Google Scholar
  14. 14.
    A. P. Sukhorukov, A. K. Sukhorukova, L. S. Telegin andI. B. Yankina in the Xth All-Union Conference on Coherent and Nonlinear Optics, Kiev, USSR, 1980, Abstracts p. 159.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1984

Authors and Affiliations

  • J. Janszky
    • 1
  • G. Corradi
    • 1
  • S. A. Arakelian
    • 2
  • R. N. Gyuzalian
    • 2
  • S. B. Sogomonian
    • 2
  1. 1.Research Laboratory for Crystal PhysicsHungarian Academy of SciencesBudapestHungary
  2. 2.Institute for Physical Research of the Armenian Academy of SciencesAshtarak-2USSR

Personalised recommendations