Advertisement

Optical and Quantum Electronics

, Volume 10, Issue 4, pp 283–291 | Cite as

Mode selection in a spectrally homogeneously broadened CW laser due to spatially inhomogeneously saturable absorption

  • D. Kühlke
  • W. Dietel
Papers

Abstract

A novel method is proposed for selecting a single longitudinal mode in lasers with homogeneously broadened gain medium. Mode selection is achieved by the interaction of the standing cavity wave between the gain medium and a spatially saturated absorber. The theory is treated in detail for various geometric configurations including examples of important laser systems under continuous-wave operation, such as dye lasers.

Keywords

Communication Network Laser System Saturable Absorption Geometric Configuration Longitudinal Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Smith,IEEE J. Quant. Elect. QE-2 (1966) 666–8.Google Scholar
  2. 2.
    F. P. Schäfer, in ‘Topics in Applied Physics. Vol. 1’, (Springer-Verlag, Berlin, 1973) pp. 66–117.Google Scholar
  3. 3.
    V. P. Chebotayev, I. M. Beterov andV. N. Lisitsyn,IEEE J. Quant. Elect. QE-4 (1968) 788–90.Google Scholar
  4. 4.
    P. H. Lee, P. B. Schoeffer andW. B. Barker,Appl. Phys. Lett. 13 (1968) 373–5.Google Scholar
  5. 5.
    D. Kühlke andW. Dietel,Opt. Quant. Elect. 8 (1976) 557–9.Google Scholar
  6. 6.
    W. Dietel andD. Kühlke,Third International Conference on Lasers and their Applications, Dresden 1977.Google Scholar
  7. 7.
    Ch. T. Pike,Opt. Commun. 10 (1974) 14–7.Google Scholar
  8. 8.
    G. Marowsky andK. Kaufmann,IEEE J. Quant. Elect. QE-12 (1976) 207–9.Google Scholar
  9. 9.
    H. Haken andH. Sauermann,Z. Phys. 73 (1963) 261–75.Google Scholar
  10. 10.
    J. Hambenne andM. Sargent,IEEE J. Quant. Elect. QE-11 (1975) 90–1.Google Scholar
  11. 11.
    M. Sargent,Appl. Phys. 9 (1976) 127–41.Google Scholar
  12. 12.
    W. E. Lamb,Phys. Rev. 134 (1964)A 1424–50.Google Scholar
  13. 13.
    D. Kühlke andW. Dietel,Opt. Quant. Elect. 9 (1977) 305–13.Google Scholar
  14. 14.
    H. Margenau andG. M. Murphy, ‘Die Mathematik für Physik und Chemie’ (B. G. Teubner, Leipzig, 1964).Google Scholar
  15. 15.
    S. A. Tuccio andF. C. Strome,Appl. Optics 11 (1972) 64.Google Scholar
  16. 16.
    H. Kogelnik, E. P. Ippen, A. Dienes andC. V. Shank,IEEE J. Quant. Elect. QE-8 (1972) 373–9.Google Scholar
  17. 17.
    A. Schmackpfeffer andH. Weber,Z. angew. Phys. 23 (1967) 413–8.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1978

Authors and Affiliations

  • D. Kühlke
    • 1
  • W. Dietel
    • 1
  1. 1.Department of PhysicsUniversity of JenaGDR

Personalised recommendations