Optical and Quantum Electronics

, Volume 12, Issue 5, pp 383–391 | Cite as

A comparison of the optical path and differential equation methods for optically thin phase gratings

  • R. R. A. Syms
  • L. Solymar


It is shown that the optical path method may lead to an approximate solution of the wave equation valid under a wide range of conditions for slanted phase gratings of arbitrary profile. Analytic solutions are given for sinusoidal and sawtooth gratings, and the accuracy of the approximations is checked by comparison with numerical solutions. The conditions under which sawtooth gratings may yield 100% efficiency are clarified.


Differential Equation Communication Network Approximate Solution Wave Equation Optical Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. V. Raman andN. S. Nagendra Nath,Proc. Ind. Acad. Sci. A2 (1935) 406–12.Google Scholar
  2. 2.
    Idem, ibid A2 (1935) 413–20.Google Scholar
  3. 3.
    Idem, ibid A3 (1936) 75–84.Google Scholar
  4. 4.
    Idem, ibid A3 (1936) 119–25.Google Scholar
  5. 5.
    Idem, ibid A3 (1936) 459–65.Google Scholar
  6. 6.
    R. Magnusson andT. K. Gaylord,J. Opt. Soc. Amer. 67 (1977) 1165–70.Google Scholar
  7. 7.
    H. Kogelnik,Bell Syst. Tech. J. 48 (1969) 2909–47.Google Scholar
  8. 8.
    R. Magnusson andT. K. Gaylord,J. Opt. Soc. Amer. 68 (1978) 806–9.Google Scholar
  9. 9.
    Idem, Opt. Commun. 28 (1979) 1–3.Google Scholar
  10. 10.
    W. R. Klein andB. D. Cook,Trans. IEEE SU-14 (1967) 123–34.Google Scholar
  11. 11.
    N. S. Nagendra Nath,Proc. Ind. Acad. Sci. 8 (1938) 499–503.Google Scholar
  12. 12.
    E. David,Phys. Z. 38 (1938) 38.Google Scholar
  13. 13.
    M. G. Moharam andL. Young,Appl. Opt. 17 (1978) 1757–9.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • R. R. A. Syms
    • 1
  • L. Solymar
    • 1
  1. 1.Holographic Group, Department of Engineering ScienceUniversity of OxfordOxfordUK

Personalised recommendations