Optical and Quantum Electronics

, Volume 15, Issue 6, pp 539–546 | Cite as

Using the shooting method to solve boundary-value problems involving nonlinear coupled-wave equations

Part 2 Degenerate four-wave mixing
  • Y. H. Ja
Papers

Abstract

The shooting method has been used to obtain numerical solutions of the nonlinear coupled-wave equations for degenerate four-wave mixing in a reflection geometry. The principle of the shooting method has been described in Part 1 of the paper [1]. Numerical results are obtained from computer calculations and presented in graphical form.

Keywords

Reflection Communication Network Graphical Form Computer Calculation Shooting Method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. H. Ja,Opt, Quant Electron. 15 (1983) 000–000.Google Scholar
  2. 2.
    Idem, ibid. 14 (1982) 547.Google Scholar
  3. 3.
    N. V. Kukhtarev andS. G. Odulov,Proc. Opt. Photonics 213-SPIE (1979) 2.Google Scholar
  4. 4.
    B. Fischer, M. Cronin-Golomb, J. O. White andA. Yariv,Opt. Lett. 6 (1981) 519.Google Scholar
  5. 5.
    M. Cronin-Golomb, J. O. White, B. Fischer andA. Yariv,ibid. 7 (1982) 313.Google Scholar
  6. 6.
    V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov andM. S. Soskin,Sov. Phys. Usp. 22 (1979) 742.Google Scholar
  7. 7.
    J. P. Huignard, J. P. Herriau, G. Rivet andP. Günter,Opt. Lett. 5 (1980) 102.Google Scholar
  8. 8.
    N. V. Kukhtarev, V. B. Markov, S. G. Odulov M. S. Soskin andV. L. Vinetskii,Ferroelectrics 22 (1979) 949.Google Scholar
  9. 9.
    Y. H. Ja,Opt. Commun. 44 (1982) 24.Google Scholar
  10. 10.
    J. P. Huignard, J. P. Herriau, P. Aubourg andE. Spitz,Opt. Lett. 4 (1979) 21.Google Scholar
  11. 11.
    Y. H. Ja,Opt. Quant. Electron. 15 (1983) 457.Google Scholar
  12. 12.
    J. P. Huignard andJ. P. Herriau,Appl. Opt. 17 (1978) 267.Google Scholar
  13. 13.
    J. Feinberg,Opt. Lett. 5 (1980) 330.Google Scholar
  14. 14.
    Y. H. Ja,Opt. Quant. Electron. 15 (1983) 269.Google Scholar
  15. 15.
    Idem, Opt. Commun. 41 (1982) 159.Google Scholar
  16. 16.
    J. Walsh, ‘The State of the Art in Numerical Analysis’, edited by D. Jacobs (Academic Press, London, 1977) p. 501.Google Scholar
  17. 17.
    H. B. Keller, ‘Numerical Solutions of Boundary-Value Problems’, edited by A. K. Aziz (Academic Press, London, 1975) p. 27.Google Scholar
  18. 18.
    Y. H. Ja, (submitted for publication).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • Y. H. Ja
    • 1
  1. 1.Research LaboratoriesTelecom AustraliaClayton NorthAustralia

Personalised recommendations