Skip to main content
Log in

Theoretical fatigue life of helically stranded optical fibres

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The design of optical fibre cables currently preferred by BICC ordinarily produces little or no tension or torsion in the fibres. Bending them into helical form, however, causes a permanent stress which couid give rise to static fatigue. In a recent paper, the probability that a bent fibre will fail owing to static fatigue was calculated. The calculation is extended in the present paper to take account of proof-testing. Assuming reasonable values for the parameters, it appears that a fibre of 125μm diameter, proof-tested at 0.5% strain and subsequently bent to a radius not less than 25 mm, would certainly survive for 40 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant of the material and the environment; surface area (possibly elementary)

A 0 :

surface area of a gauge length

a :

radius of fibre

B :

constant of the material and the environment

E :

Young's modulus

F :

cumulative probability of failure

F p :

failure probability on proof test

F s :

failure probability in service

F(ts):

failure probability in service, referred to the number of fibres surviving the proof test

K I :

stress intensity factor for mode I failure

K Ic :

critical stress intensity factor

L :

length of fibre

L 0 :

gauge length

M :

modified Weibull shape parameter

m :

Weibull shape parameter

n :

stress corrosion susceptibility

p :

stress corrosion susceptibility for environment of proof test

q(M) :

a function (see text)

R :

radius of curvature

S :

applied stress

S eq :

equivalent stress (whereS varies with time)

S i,S′ i :

inert strength

S 0 :

Weibull scale parameter

S p :

maximum stress during proof test

S s :

service stress

s :

stress corrosion susceptibility for service environment

t :

time

t eq :

equivalent duration (whereS varies with time)

t f :

time to failure

t 0 :

scale time

t p :

equivalent duration of proof test

t s :

service life

Y :

a geometrical constant

δ, δ0, δ′0 :

size of flaw

θ :

azimuth measured from neutral plane

References

  1. R. Olshansky andR. D. Maurer,J. Appl. Phys. 47 (1976) 4497.

    Google Scholar 

  2. W. B. Gardner,Bell Syst. Tech. J. 54 (1975) 457.

    Google Scholar 

  3. R. Kashyap, M. H. Reeve, S. Hornung, G. R. Bandurek andJ. E. Nevett,Electron. Lett. 18 (1982) 263.

    Google Scholar 

  4. P. D. Patel, H. C. Chandan andD. Kalish, ‘Proceedings of the 30th International Wire and Cable Symposium’ (1981) 37.

  5. R. D. Maurer, paper 19.2 at 5th European Conference on Optical Communication, Amsterdam (1979).

  6. Idem, Mater. Res. Bull. 14 (1979) 1305.

    Google Scholar 

  7. A. G. Evans andS. M. Wiederhorn,Int. J. Fracture 10 (1974) 379.

    Google Scholar 

  8. R. D. maurer, paper WCC1 at Topical Meeting on Optical Fibre Communication, Phoenix (1982).

  9. M. Frechet,Ann. Soc. Polon. Math. 6 (1927) 93.

    Google Scholar 

  10. R. A. Fisher andL. H. C. Tippett,Proc. Camb. Phil. Soc. 24 (1928) 180.

    Google Scholar 

  11. W. Weibull,Proc. Roy. Swedish Inst. Eng. Res. 151 (1939) 5.

    Google Scholar 

  12. J. D. Helfinstine,J. Amer. Ceram. Soc. 63 (1980) 113.

    Google Scholar 

  13. P. W. France andW. J. Duncan, in ‘Advances in Ceramics’ Vol. 2 ‘Physics of Fibre Optics’, edited by B. Bendow and S. S. Mitra, American Ceramic Society, Columbus, Ohio, 1980). pp. 149–57.

    Google Scholar 

  14. A. G. Evans andE. R. Fuller,Mater. Sci. Eng. 19 (1975) 69.

    Google Scholar 

  15. W. P. Minnear andR. C. Bradt,J. Amer. Ceram. Soc. 58 (1975) 345.

    Google Scholar 

  16. D. Kalish, B. K. Tariyal andH. C. Chandan, ‘Proceedings of the 27th International Wire and Cable Symposium’ (1978) 331.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, M. Theoretical fatigue life of helically stranded optical fibres. Opt Quant Electron 15, 253–260 (1983). https://doi.org/10.1007/BF00619936

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619936

Keywords

Navigation