Optical and Quantum Electronics

, Volume 16, Issue 6, pp 511–516 | Cite as

Short delay time UV preionized TEA CO2 laser operating with binary CO2/H2 and CO2/He gas mixtures

  • M. Trtica
  • P. Vujković Cvijin
  • I. Mendaš


In order to obtain short tail-free output laser pulses from a TEA CO2 laser, parametric study of the laser operation with CO2/H2 and CO2/He binary gas mixtures containing high CO2 concentrations was carried out. A small scale UV preionized short delay time TEA CO2 laser was employed. In terms of the maximum extractable output pulse energy and power, the more conventional CO2/He gas mixture was found to be inferior in comparison with the CO2/H2 mixture proposed here.


Laser Pulse Pulse Energy Parametric Study Extractable Output Output Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Norris andA. L. S. Smith,Appl. Phys. Lett. 34 (1979) 385.Google Scholar
  2. 2.
    S. Howells, J. V. Cridland andR. H. Derrick,J. Phys. E: Sci. Instrum. 14 (1981) 293.Google Scholar
  3. 3.
    S. Howells andJ. V. Cridland,ibid. 15 (1982) 542.Google Scholar
  4. 4.
    S. Howells, A. McNeish andJ. J. Harris,Opt. Quantum Electron. 12 (1980) 435.Google Scholar
  5. 5.
    D. S. Stark, P. H. Cross andM. R. Harris,J. Phys. E: Sci. Instrum. 11 (1978) 311.Google Scholar
  6. 6.
    P. E. Dyer andB. L. Tait,ibid. 16 (1983) 467.Google Scholar
  7. 7.
    N. Menyuk andP. F. Moulton,Rev. Sci. Instrum. 51 (1980) 216.Google Scholar
  8. 8.
    M. C. Richardson, K. Leopold andA. J. Alcock,IEEE J. Quant. Electron. QE-9 (1973) 934.Google Scholar
  9. 9.
    H. J. Seguin, J. Tulip andMcKen,ibid. QE-10 (1974) 311.Google Scholar
  10. 10.
    A. K. Laflamme,Rev. Sci. Instrum. 41 (1970) 1578.Google Scholar
  11. 11.
    R. Dumanchin, M. Michon, J. C. Farcy, G. Boudinet andJ. Rocca-Serra,IEEE J. Quant. Electron. QE-8 (1972) 163.Google Scholar
  12. 12.
    J. E. van derLaan, “A System Description of an Improved 10.6 μm Lidar System for Monostatic Optical Measurements of Battlefield Dust and Smoke”, SRI Project 5862, Report number ASL-CR-79-0001-1 (1979).Google Scholar
  13. 13.
    M. Neve de Mevergnies,Appl. Phys. Lett. 34 (1979) 853.Google Scholar
  14. 14.
    W. Baumer, PhD Thesis, Ludwig-Maximilians-Universität, Munich (1979).Google Scholar
  15. 15.
    Y. Ohwadano andT. Seiguchi,Jpn. J. Appl. Phys. 19 (1980) 1493.Google Scholar
  16. 16.
    T. Chang,Rev. Sci. Instrum. 44 (1973) 405.Google Scholar
  17. 17.
    T. F. Deutsch,Appl. Phys. Lett. 20 (1972) 315.Google Scholar
  18. 18.
    H. Shields, A. L. S. Smith andB. Norris,J. Phys. D: Appl. Phys. 9 (1976) 1587.Google Scholar
  19. 19.
    B. Norris andA. L. S. Smith,ibid. 10 (1977) L 237.Google Scholar
  20. 20.
    A. L. S. Smith andP. G. Browne,J. Phys. D: Appl. Phys. 7 (1914) 1652.Google Scholar
  21. 21.
    P. W. Pace andM. Lacombe,IEEE J. Quant. Electron. QE-14 (1978) 263.Google Scholar
  22. 22.
    K. O. Tan, D. J. James, J. A. Nilson, N. H. Burnett andA. J. Alcock,Rev. Sci. Instrum. 51 (1980) 776.Google Scholar
  23. 23.
    A. L. S. Smith andB. Norris,J. Phys. D: Appl. Phys. 11 (1978) 1949.Google Scholar
  24. 24.
    D. C. Tyte, in “Advances in Quantum Electronics”, Vol. 1 (edited by D. W. Goodwin) (Academic Press, New York, 1970).Google Scholar

Copyright information

© Chapman and Hall Ltd 1984

Authors and Affiliations

  • M. Trtica
    • 1
  • P. Vujković Cvijin
    • 1
  • I. Mendaš
    • 1
  1. 1.Institute of PhysicsBelgradeYugoslavia

Personalised recommendations