Advertisement

Optical and Quantum Electronics

, Volume 24, Issue 4, pp S379–S403 | Cite as

Design trade-offs in optoelectronic parallel processing systems using smart-SLMs

  • D. -T. Lu
  • V. H. Ozguz
  • P. J. Marchand
  • A. V. Krishnamoorthy
  • F. Kiamilev
  • R. Paturi
  • S. H. Lee
  • S. C. Esener
Papers

Abstract

Optoelectronic devices with free-space optical interconnections offer new possibilities in massively parallel processing. The trade-offs involved in system design and device selection for optoelectronic implementations are examined. System design trade-offs are approached from algorithmic and technological standpoints. From the algorithmic standpoint, new architectures based on expander graphs, that have been shown to provide low-contention fault-tolerant communication, are discussed. Optoelectronic systems which implement such random graphs can be folded to reduce the hardware cost or unfolded to increase bandwidth. They can also be partially folded by increasing the grain size or by reducing the randomness of the graph topology to reduce the complexity of the interconnection holograms. An optoelectronic and a VLSI implementation of a multistage interconnection network are compared from a technological standpoint. Physical design parameters, such as the chip size or the number of phase levels of the interconnection holograms, are related to the system design metrics such as bandwidth, volume, area and power. It is shown that the optoelectronic implementations have higher performance and are more cost-effective than VLSI implementations. These results are also used to provide general guidelines for device selection in the design of smart pixels/smart spatial light modulators based optoelectronic systems.

Keywords

Parallel Processing Random Graph Graph Topology Hardware Cost Parallel Processing System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. A. Neff, R. A. Athale, S. H. Lee,Proc. IEEE 78 (1990) 826.Google Scholar
  2. 2.
    H. S. Hinton,IEEE J. Sel. Areas Commun. 6 (1988), 1209.Google Scholar
  3. 3.
    S. Esener,Crit. Rev. Opt. Sci. Technol. CR35 (1990) 100.Google Scholar
  4. 4.
    M. E. Prise,Crit. Rev. Opt. Sci. Technol. CR35 (1990) 3.Google Scholar
  5. 5.
    F. Kiamilev, S. Esener, V. Ozguz andS. H. Lee,Crit. Rev. Opt. Sci. Technol. CR35 (1990) 197.Google Scholar
  6. 6.
    R. Paturi, D.-T. Lu, J. Ford, S. Esener andS. H. Lee,Appl. Opt. 30 (1991) 917.Google Scholar
  7. 7.
    F. Kiamilev, P. J. Marchand, A. V. Krishnamoorthy, S. Esener andS. H. Lee,IEEE J. Lightwave Technol. 9 (1991) 1674.Google Scholar
  8. 8.
    E. Upfal, in Proceedings of the 21st ACM Symposium on Theory of Computing (ACM, New York, 1989) p. 241.Google Scholar
  9. 9.
    S. Arora, T. Leighton andB. Maggs, in Proceedings of the 22nd ACM Symposium on Theory of Computing (ACM, New York, 1990) p. 149.Google Scholar
  10. 10.
    L. G. Valiant,J. Comput. Sys. Sci. 13 (1988) 278.Google Scholar
  11. 11.
    L. G. Valiant,SIAM J. Comput. 11 (1982) 350.Google Scholar
  12. 12.
    T. Leighon andB. Maggs, in Proceedings of the IEEE Symposium on Foundations of Computer Science (IEEE, New York, 1989) p. 384.Google Scholar
  13. 13.
    M. Ajtai, J. Komlos, E. Szemeredi,Combinatorica 3 (1983) 1.Google Scholar
  14. 14.
    K. Batcher, in AFIPS Conference Proceedings (AFIPS, Montvale, New Jersey, 1968) p. 576.Google Scholar
  15. 15.
    G. Bilardi andF. P. Preparata,Inf. Process. Lett. 20 (1985) 55.Google Scholar
  16. 16.
    R. Cypher, in Proceedings of the 6th MIT Conference, Dally ed (MT Press, Cambridge, Mass, 1990) p. 314.Google Scholar
  17. 17.
    J. Ma, J. E. Ford, Y. Taketomi andS. H. Lee,Opt. Lett. 16 (1991) 270.Google Scholar
  18. 18.
    J. E. Ford, S. H. Lee andY. Fainman,Proc. SPIE. 1215 (1990) 155.Google Scholar
  19. 19.
    J. E. Ford, Y. Fainman andS. H. Lee,Opt. Lett. 15 (1990) 1088.Google Scholar
  20. 20.
    M. Ajtai, J. Komlos, E. Szemeridi, Technical Report, Department of Mathematics, Rutgers University, 1989.Google Scholar
  21. 21.
    R. M. Tanner,SIAM J. Alg. Disc. Math. 5 (1984) 287.Google Scholar
  22. 22.
    N. Alon,Combinatorica 6 (1983) 83.Google Scholar
  23. 23.
    A. L. Decegama, inParallel Processing Architectures and VLSI Hardware: Prentice Hall (1989).Google Scholar
  24. 24.
    M. A. Franklin,IEEE Trans. C-30 (1981) 283.Google Scholar
  25. 25.
    S. C. Knauer, A. Huang andJ. H. O'Neill, inCMOS VLSI Design, N. Weste and K. Eshraghian (Ed.), Addison-Wesley, 1988).Google Scholar
  26. 26.
    A. W. Lohmann, G. Stucke andW. Stork,Appl. Opt. 25 (1986) 1530.Google Scholar
  27. 27.
    F. Kiamilev, P. J. Marchand, A. V. Krishnamoorthy, K. S. Urquhart, C. Ugur, R. Paturi, V. H. Ozguz andS. H. Lee, in Proceedings of OC'90, Kobe, Japan (Society of Applied Physics and SPIE, Tokyo, Japan and Bellingham, Washington, USA).Google Scholar
  28. 28.
    S. H. Lin, T. F. Krille andJ. F. Walkup,SPIE Proc. 752 (1987) 209.Google Scholar
  29. 29.
    W. S. Marcus andJ. J. Hickey, Proceedings of ISSCC '90, San Francisco, 1990, CA), pp 32–33.Google Scholar
  30. 30.
    A. Huang andS. Knauer, Proceedings of GLOBECOM'84 Atlanta, Georgia, USA, (1984) p. 181.Google Scholar
  31. 31.
    W. S. Marcus andJ. J. Hickey, in Proceedings of ISSCC'90 San Francisco, California, USA, (1990) 32.Google Scholar
  32. 32.
    H. B. Bakoglu,Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley (1990).Google Scholar
  33. 33.
    D. A. B. Miller,Opt. Photon. News,1 (1990) 7.Google Scholar
  34. 34.
    A. Dickinson andM. E. Prise,Appl. Opt. 29 (1990) 2001.Google Scholar
  35. 35.
    S. D. Kirkish, J. C. Daly, L. Jou andS.-F. Su,IEEE J. Solid-State Circuits,22 (1987) 299.Google Scholar
  36. 36.
    P. Aubert, H. J. Oguey andR. Vuilleumier,IEEE J. Solid-State Circuits,23 (1988) 465.Google Scholar
  37. 37.
    W. Dobblelaere, D. Huang, M. S. Unlu andH. Morkoc,Appl. Phys. Lett. 55 (1988) 94.Google Scholar
  38. 38.
    C. P. Kruskal andM. Snir,IEEE Trans. C-32 (1983) 1091.Google Scholar
  39. 39.
    J. Patel,IEEE Trans. C-30 (1981) 771.Google Scholar
  40. 40.
    A. L. Lentine, F. B. McCormick, R. A. Novotny, L. M. F. Chirovsky, L. A. D'Asaro, R. F. Kopf, J. M. Kuo andG. D. Boyd,IEEE Phot. Tech. Lett. 2 (1990) 51.Google Scholar
  41. 41.
    T. H. Lin, A. Ersen, J. H. Wang, S. Dasgupta, S. Esener andS. H. Lee,Appl. Opt.,29 (1990) 1595.Google Scholar
  42. 42.
    G. J. Swanson,DARPA Technical Report,854 (1989).Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • D. -T. Lu
    • 1
  • V. H. Ozguz
    • 1
  • P. J. Marchand
    • 1
  • A. V. Krishnamoorthy
    • 1
  • F. Kiamilev
    • 1
  • R. Paturi
    • 1
  • S. H. Lee
    • 1
  • S. C. Esener
    • 1
  1. 1.Department of Electronic Engineering & Computer ScienceUniversity of CaliforniaSan Diego, La Solla

Personalised recommendations