Transition Metal Chemistry

, Volume 11, Issue 6, pp 201–205 | Cite as

Synthesis and characterisation of nickel(II), cobalt(II), manganese(II), copper(II), zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) complexes of tridentate dibasic ONO donor Schiff bases derived from 2-benzothiazolecarbohydrazide and salicylaldehyde/2-hydroxy-1-naphthaldehyde

  • Arun Syamal
  • Mannar Ram Maurya
Full Papers

Summary

The syntheses of several new coordination complexes of nickel(II), cobalt(II), manganese(II), copper(II), zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) with new Schiff bases derived from 2-benzothiazolecarbohydrazide and salicylaldehyde or 2-hydroxy-1-naphthaldehyde are described. These complexes have been characterised by elemental analyses, electrical conductance, magnetic susceptibility, molecular weight, i.r. and electronic spectra. The Schiff bases behave as dibasic and tridentate ligands coordinating through the ONO donor system and form complexes of the types NiL · 3H2O, MnL · 2H2O, CoL · 2H2O, CuL, ZnL · H2O, UO2L · MeOH and MoO2L · MeOH (where LH2 = Schiff base). The copper(II) complexes exhibit subnormal magnetic moments indicating the presence of an antiferromagnetic exchange interaction, whereas the nickel(II), cobalt(II) and manganese(II) complexes behave normally at room temperature. Zinc(II), dioxouranium(VI) and dioxomolybdenum(VI) complexes are diamagnetic; the zinc (II) complexes are tetrahedral, the copper(II) complexes are square planar, all the other complexes are octahedral. Thev(C=N),v(C-O),v(N-N) andv(C-S) shifts have been measured in order to locate the Schiff base coordination sites.

Keywords

Cobalt Manganese MeOH Magnetic Susceptibility Schiff Base 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Haran, J. Gairin and G. Gmmanges,Inorg. Chim. Acta, 46, 63 (1980); J. C. Craliz, J. C. Rub, D. Willis and J. Edger,Nature, 34, 176 (1965).Google Scholar
  2. (2).
    M. F. Iskander, L. El-Sayeed, S. Saddeck and M. A. Abuo Tale,Transition Met. Chem., 5, 168 (1980); M. B. Hursthouse, S. S. A. Jayaweera and A. Quick,J. Chem. Soc., Dalton, 279 (1979); A. Syamal and D. Kumar,Transition Met. Chem., 7, 118 (1982);Indian J. Pure & Appl. Physics, 21, 87 (1983).Google Scholar
  3. (3).
    M. Gallego, M. Garcia-Vargas and M. Valcarcel,Analyst, 104, 613 (1979).Google Scholar
  4. (4).
    K. Nagano, H. Kinoshita and H. Hirakawa,Chem. Pharma. Bull. Japan, 12, 1198 (1964).Google Scholar
  5. (5).
    E. Compaign and J. E. Vanerth,J. Org. Chem., 23, 1344 (1958).Google Scholar
  6. (6).
    F. G. Mann and B. C. Saunders,Practical Organic Chemistry, Longmans, London, 1961, p. 435.Google Scholar
  7. (7).
    R. L. Dutta and A. Syamal,Elements of Magnetochemistry, S. Chand & Co., New Delhi, 1982, p. 9.Google Scholar
  8. (8).
    F. A. Cotton and G. Wilkinson,Advanced Inorganic Chemistry, 2nd Edit., Wiley Eastern Private Ltd., New Delhi, 1972, p. 869, 881.Google Scholar
  9. (9).
    W. Manch and W. C. Fernelius,J. Chem. Educ., 38, 192 (1961).Google Scholar
  10. (10).
    A. B. P. Lever,Inorganic Electronic Spectroscopy, Elsevier Publishing Company, Amsterdam, 1968.Google Scholar
  11. (11).
    A. B. P. Lever and D. Ogden,J. Chem. Soc. A, 2041 (1967).Google Scholar
  12. (12).
    A. Syamal and B. K. Gupta,J. Indian Chem. Soc., 59, 697 (1982); R. L. Dutta and R. K. Ray,J. Inorg. Nucl. Chem., 39, 1848 (1977).Google Scholar
  13. (13).
    E. Sinn and C. M. Harris,Coord. Chem. Rev., 4, 391 (1969); T. Tokki, Y. Muto, M. Kato and H. B. Jonassen,J. Inorg. Nucl. Chem., 34, 3377 (1972).Google Scholar
  14. (14).
    B. Bleaney and K. D. Bowers,Proc. R. Soc., London Ser. A, 214, 451 (1952).Google Scholar
  15. (15).
    A. Syamal and K. S. Kale,Transition Met. Chem., 4, 298 (1979).Google Scholar
  16. (16).
    G. Herzberg,Molecular Spectra and Molecular Structure, D. Van Nostrand Co, New York, Vol. 2, 1959, p. 435.Google Scholar
  17. (17).
    A. Syamal and O. P. Singhal,Synth. React. Inorg. Met. Org. Chem., 10, 243 (1980),Transition Met. Chem., 4, 179 (1979); A. T. T. Hsieh, R. M. Sheahan and B. O. West,Aust. J. Chem., 28, 885 (1975).Google Scholar
  18. (18).
    L. H. Jones,Spectrochim. Acta, 11, 409 (1959).Google Scholar
  19. (19).
    S. P. McGlymn, J. K. Smith and W. C. Neely,J. Chem. Phys., 35, 105 (1961); G. L. Cadlow, A. B. V. Cleave and R. L. Eager,Cand. J. Chem., 38, 772 (1960).Google Scholar
  20. (20).
    E. I. Stiefel,Prog. Inorg. Chem., 22, 1 (1977).Google Scholar
  21. (21).
    H. Ledon, M. Bonnet and J. Y. Lalleman,J. Chem. Soc., Chem. Comm., 702 (1979).Google Scholar
  22. (22).
    S. P. McGlynn and J. K. Smith,J. Mol. Spectrosc., 6, 164 (1961).Google Scholar
  23. (23).
    P. Teyssi and J. J. Charrettee,Spectrochim. Acta, 19, 1407 (1963).Google Scholar
  24. (24).
    A. Syamal and K. S. Kale,Indian J. Chem., 19A, 225 (1980).Google Scholar
  25. (25).
    A. Baribanti, F. Dallvalle, M. A. Pellinghell and E. Laporati,Inorg. Chem., 7, 1430 (1968).Google Scholar
  26. (26).
    Z. Huang, P. M. May and D. R. Williams,Inorg. Chim. Acta, 56, 41 (1981).Google Scholar

Copyright information

© VCH Verlagsgesellschaft mbH 1986

Authors and Affiliations

  • Arun Syamal
    • 1
  • Mannar Ram Maurya
    • 2
  1. 1.Department of Applied Sciences and HumanitiesKurukshetra UniversityKurukshetra 132119, HaryanaIndia
  2. 2.Department of ChemistryRegional Engineering CollegeKurukshetra 132119, HaryanaIndia

Personalised recommendations