Applied Physics A

, Volume 48, Issue 3, pp 229–232 | Cite as

Silicide formation by furnace annealing of thin Si films on large-grained Ni substrates

  • A. J. Brunner
  • E. Ma
  • M. -A. Nicolet
Solids and Materials


Si films with a thickness of approximately 250 nm have been electron-beam evaporated on thick, large-grained Ni substrates (grain size a few mm to 1 cm in diameter). An in situ sputter cleaning procedure has been used to clean the Ni surface before the Si deposition. Thermal annealings have been performed in a vacuum furnace. Ni2Si is the first phase that grows at temperatures between 240 °C and 300 °C as a laterally uniform interfacial layer with a diffusion-controlled kinetics. The layer thicknessx follows the growth lawx2=kt, withk=k0 exp(-EakBT), wherek0=6.3 × 10−4cm 2/s andEa=(1-1±0.1) eV. Because of the virtually infinite supply of Ni, annealing at 800 °C for 130min yields a Ni-based solid solution as the final phase. The results are compared with those reported in the literature on suicide formation by the reaction of a thin Ni film on Si substrates, as well as with those for interfacial phase formation in Ni/Zr bilayers.


61.70.Ng 68.90.+g 81.90.+c 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.N. Tu, J.W. Mayer: InThin Films—Interdiffusion and Reactions, ed. by J.M. Poate, K.N. Tu, J.W. Mayer (Wiley, New York 1978) Chap. 10Google Scholar
  2. 2.
    M-A. Nicolet, S.S. Lau: InVLSI Electronics, ed. by N.G. Einspruch, N. Larrabee (Academic, New York 1983) Chap. 6 and references thereinGoogle Scholar
  3. 3.
    D. Gupta, D.R. Campbell, P.S. Ho: InThim Films—Interdiffusion and Reactions, ed. by J.M. Poate, K.N. Tu, J.W. Mayer (Wiley, New York 1978) Chap. 7Google Scholar
  4. 4.
    J.E.E. Baglin, J.M. Poate: InThin Films—Interdiffusion and Reactions, ed. by J.M. Poate, K.N. Tu, J.W. Mayer (Wiley, New York 1978) Chap. 9Google Scholar
  5. 5.
    A.M. Vredenberg, J.F.M. Westendorp, F.W. Saris, N.M. van der Pers, Th.H. de Keijser: J. Mater. Res.1, 774 (1986)Google Scholar
  6. 6.
    K. Pampus, K. Samwer, J. Bottiger: Europhys. Lett.3, 581 (1987)Google Scholar
  7. 7.
    C.-D. Lien, M-A. Nicolet, S.S. Lau: Thin Solid Films143, 63 (1986)Google Scholar
  8. 8.
    S.-J. Kim, Y.-T. Cheng, M-A. Nicolet: InAdvanced Processing and Characterization of Semiconductors III, SPIE (Society of Photo-Optical Instrumentation Engineers) Vol.623, 261 (1986)Google Scholar
  9. 9.
    J.C. Barbour: Phys. Rev. Lett.55, 2872 (1985)Google Scholar
  10. 10.
    X.-A. Zhao, H.-Y. Yang, E. Ma, M-A. Nicolet: J. Appl. Phys.62, 1825 (1987)Google Scholar
  11. 11.
    R.E. Smallman: InModern Physical Metallurgy, 4th edn. (Butterworths, London 1985) Chap. 10Google Scholar
  12. 12.
    G. Petzow:Metallographic Etching (American Society for Metals, Metals Park 1978) p. 76Google Scholar
  13. 13.
    E. Ma, M. Natan, B.S. Lim, M-A. Nicolet: Mater. Res. Soc. Symp. Proc.92, 205 (1987)Google Scholar
  14. 14.
    E. Ma, W.J. Meng, W.L. Johnson, M-A. Nicolet, M. Natan: Appl. Phys. Lett. (submitted)Google Scholar
  15. 15.
    R.W. Bene: Appl. Phys. Lett.41, 529 (1982)Google Scholar
  16. 16.
    D.M. Scott: PhD thesis, California Institute of Technology (1982)Google Scholar
  17. 16a.
    D.M. Scott, M-A. Nicolet: Nucl. Instrum. Methods182/183, 655 (1981)Google Scholar
  18. 17.
    C.-D. Lien, M-A. Nicolet: J. Vac. Sci. Technol.B2, 738 (1984)Google Scholar
  19. 18.
    G. Ottaviani: Thin Solid Films140, 3 (1986)Google Scholar
  20. 19.
    C.-D. Lien, L.S. Wielunski, M-A. Nicolet, K.M. Stika: Thin Solid Films104, 234 (1983)Google Scholar
  21. 20.
    B.Y. Tsaur, S.S. Lau, M-A. Nicolet, J.W. Mayer: Appl. Phys. Lett.38, 922 (1981)Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. J. Brunner
    • 1
  • E. Ma
    • 1
  • M. -A. Nicolet
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations