Skip to main content
Log in

Do oxygen molecules contribute to oxygen diffusion and thermal donor formation in silicon?

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In- and out-diffusion experiments of oxygen in silicon indicate the existence of an oxygen-containing species diffusing much faster than interstitial oxygen at temperatures below about 700°C. The formation of oxygen-related thermal donors in the temperature range around 450°C also requires a fast diffusing species. The paper examines the possibility of this fast diffusing species beingmolecular oxygen, as had been suggested earlier. Special emphasis will be placed on experimental results which have become available since that time. These results allow one to relate thermal donor formation to the loss of interstitial oxygen and to oxygen precipitation. The role of carbon is also considered in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Oehrlein, J.W. Corbett: InDefects in Semiconductors II, ed. by S. Mahajan, J.W. Corbett (North-Holland, New York 1983) p. 107

    Google Scholar 

  2. P. Wagner, C. Holm, E. Sirtl, R. Oeder, W. Zulehner: Adv. Solid State Phys.24, 191 (1984)

    Google Scholar 

  3. A. Bourret: InProc. 13th Int. Conf. Defects in Semiconductors, ed. by L.C. Kimerling, J.M. Parsey Jr. (The Metallurgical Soc. of AIME, Warrendale, PA 1985) p. 129

    Google Scholar 

  4. L.C. Kimerling: InOxygen, Carbon, Hydrogen and Nitrogen in Silicon, ed. by S.J. Pearton, J.W. Corbett, J.C. Mikkelsen, Jr., S.J. Pennycook (Mat. Res. Soc., Pittsburgh, PA 1986) p. 83

    Google Scholar 

  5. R.C. Newman: InProc. Defects in Electronic Materials, Mat. Res. Soc. Meeting, Dec. 1987, Boston

  6. W. Kaiser, H.L. Frisch, H. Reiss: Phys. Rev.112, 1546 (1958)

    Google Scholar 

  7. D. Helmreich, E. Sirtl: InSemiconductor Silicon 1981, ed. by H.R. Huff, R.J. Kriegler, Y. Takeishi (Electrochem. Soc., Pennington, NJ 1981) p. 626

    Google Scholar 

  8. U. Gösele, T.Y. Tan: Appl. Phys. A28, 79 (1982)

    Google Scholar 

  9. A. Ourmazd, W. Schröter, A. Bourret: J. Appl. Phys.56, 1670 (1984)

    Google Scholar 

  10. R.C. Newman: J. Phys. C18, L967 (1985)

    Google Scholar 

  11. R.C. Newman: In [4] p. 205

    Google Scholar 

  12. D. Mathiot: Appl. Phys. Lett.51, 904 (1987)

    Google Scholar 

  13. D. Mathiot: In [5]

  14. P. Gaworzewski, E. Hild: Phys. Status Solidi (a)92, 129 (1985)

    Google Scholar 

  15. M. Suezawa, K. Sumino: Phys. Status Solidi (a)82, 235 (1984)

    Google Scholar 

  16. G.S. Oehrlein: J. Appl. Phys.54, 5453 (1983)

    Google Scholar 

  17. J.T. Borenstein, V.A. Singh, J.W. Corbett: J. Appl. Phys.62, 1287 (1987)

    Google Scholar 

  18. J.T. Borenstein, D. Peak, J.W. Corbett: J. Mater. Res.1, 527 (1986)

    Google Scholar 

  19. L.C. Snyder, J.W. Corbett, P. Deak, P. Wu: In [5]

  20. R.C. Newman, A.S. Oates, F.M. Livingston: J. Phys. C16, L667 (1983)

    Google Scholar 

  21. W. Bergholz, J.L. Hutchinson, P. Piroux: J. Appl. Phys.58, 3419 (1985)

    Google Scholar 

  22. S. Messoloras, R.C. Newman, R.J. Stewart, J.H. Tucker: Semicond. Sci. Technol.2, 14 (1987)

    Google Scholar 

  23. R.A. Craven: In [7] p. 254

    Google Scholar 

  24. H.J. Hrostowski, R.H. Kaiser: J. Phys. Chem. Solids9, 214 (1959)

    Google Scholar 

  25. Y. Takano M. Maki: InSemiconductor Silicon 1973, ed. by H.R. Huff, R.R. Burgers (Electrochem. Soc., Princeton, NJ 1973 p. 469

    Google Scholar 

  26. J. Gass, H.H. Müller, H. Stüssi, S. Schweitzer: J. Appl. Phys.51, 2030 (1980)

    Google Scholar 

  27. K. Kugimiya, S. Akiyama, S. Nakamura: In [7] p. 294

    Google Scholar 

  28. J.C. Mikkelsen: Appl. Phys. Lett.40, B36 (1982)

    Google Scholar 

  29. R.A. Logan, A.J. Peters: J. Appl. Phys.30, 1627 (1959)

    Google Scholar 

  30. P. Gaworzewski, G. Ritter: Phys. Status Solidi A67, 511 (1981)

    Google Scholar 

  31. S.-T. Lee, D. Nichols: Appl. Phys. Lett.47, 1001 (1985)

    Google Scholar 

  32. K. Wada, N. Inoue, K. Kohra: J. Crystal Growth49, 749 (1980)

    Google Scholar 

  33. M.J. Binns, W.P. Brown, J.G. Wilkes, R.C. Newman, F.M. Livingston, S. Messoloras, R.J. Stewart: Appl. Phys. Lett.42, 525 (1983)

    Google Scholar 

  34. R.D. Southgate: Proc. R. Soc., London B70, 800 (1957)

    Google Scholar 

  35. C. Hass: J. Phys. Chem. Solids15, 108 (1960)

    Google Scholar 

  36. J.W. Corbett, R.S. McDonald, G.D. Watkins: J. Phys. Chem. Solids25, 873 (1964)

    Google Scholar 

  37. M. Stavola, J.R. Patel, L.C. Kimerling, P.E. Freeland: Appl. Phys. Lett.42, 73 (1983)

    Google Scholar 

  38. A.K. Tipping, R.C. Newman, D.C. Newton, J.H. Tucker: InDefects in Semiconductors, ed. by H.J. von Bardeleben (Materials Science Forum 10–12 1986) p. 887

  39. S.-T. Lee, P. Fellinger: Appl. Phys. Lett.49, 1793 (1986)

    Google Scholar 

  40. S.-T. Lee, P. Fellinger, S. Chen: J. Appl. Phys.63, 1924 (1988)

    Google Scholar 

  41. S. Hahn: In [4] p. 181

    Google Scholar 

  42. For an overview and references, see: U. Gösele: In [4] p. 419

    Google Scholar 

  43. P.E. Freeland, K.A. Jackson, L.W. Lowe, J.R. Patel: Appl. Phys. Lett.30, 31 (1977)

    Google Scholar 

  44. N. Inoue, K. Wada, J. Osaka: In [7] p. 282

    Google Scholar 

  45. T.Y. Tan, C.Y. Kung: J. Appl. Phys.59, 917 (1986)

    Google Scholar 

  46. T.Y. Tan, R.L. Kleinhenz, C.P. Schneider: In [4] p. 195

    Google Scholar 

  47. B. Pajot, H. Compain, J. Lerouille, B. Clerjand: Physica117B/118B, 110 (1983)

    Google Scholar 

  48. R. Oeder, P. Wagner: In [1] p. 171

    Google Scholar 

  49. Y. Kamiura, F. Hashimoto, K. Endo: J. Appl. Phys.61, 2478 (1987)

    Google Scholar 

  50. T. Gregorkiewicz, D.A. van Wezep, H.H.P.Th. Bekman, C.A.J. Ammerlaan: In [38] p. 1009

  51. J. Michel, J.R. Niklas, J.M. Spaeth, C.M. Weinert: Phys. Rev. Lett.57, 611 (1986)

    Google Scholar 

  52. J. Michel, J.R. Niklas, J.M. Spaeth: In [5]

  53. A.R. Bean, R.C. Newman: J. Phys. Chem. Solids33, 255 (1972)

    Google Scholar 

  54. J. Lerouille: Phys. Status Solidi A67, 177 (1981)

    Google Scholar 

  55. H.W. Zulehner: InAggregation Phenomena of Point Defects in Silicon, ed. by E. Sirth, J. Goorissen, P. Wagner: (Electrochem. Soc., Pennington, MJ 1983) p. 89

    Google Scholar 

  56. J.L. Lindström, H. Weman, G.S. Oehrlein: Phys. Status Solidi99A, 581 (1987)

    Google Scholar 

  57. R.C. Newman, M. Clayton, S.H. Kinder, S. Messoloras, A.S. Oates, R.J. Stewart: InSemiconductor Silicon 1986, ed. by H.R. Huff, T. Abe, B.O. Kolbesen (Electrochem. Soc., Pennington, NJ 1986) p. 766

    Google Scholar 

  58. R.C. Newman, A.S. Oates, F.M. Livingston: J. Phys. S.: Solid State Phys.16, L667 (1983)

    Google Scholar 

  59. S. Hahn, K.N. Ritz, S. Shatas, H.J. Stein, Z.U. Rek, W.A. Tiller: J. Appl. Phys. (in press)

  60. P. Fraundorf, G.K. Fraundorf, F. Shimura: J. Appl. Phys.58, 4049 (1985)

    Google Scholar 

  61. S. Hahn: In [5]

  62. F. Shimura, T. Higuchi, R.S. Hockett: Appl. Phys. Lett.53, 69 (1988)

    Google Scholar 

  63. T. Itoh, T. Abe: Appl. Phys. Lett.53, 39 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper submitted as contribution to special issue on “Molecule-Like Defects in Crystalline Semiconductors”. Appl. Phys. 48/1 January 1989

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gösele, U., Ahn, K.Y., Marioton, B.P.R. et al. Do oxygen molecules contribute to oxygen diffusion and thermal donor formation in silicon?. Appl. Phys. A 48, 219–228 (1989). https://doi.org/10.1007/BF00619388

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619388

PACS

Navigation