Advertisement

Journal of comparative physiology

, Volume 145, Issue 3, pp 331–339 | Cite as

The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fishAplocheilus lineatus (Cyprinodontidae)

  • Horst Bleckmann
  • Erich Schwartz
Article

Summary

The physical properties of water surface waves and the responses of the topminnowAplocheilus lineatus to normal and altered single wave trains were investigated.
  1. 1.

    A single immersion of any object into the water or a short air blow onto the water surface produces surface waves containing wave cycles of different amplitudes and frequencies. Such wave trains are characterized by a downward frequency modulation, the degree of which depends on source distance but not on initial stimulus intensity (Figs. 1 and 2).

     
  2. 2.

    When stimulated with single wave trains (clicks)A. lineatus is able to determine the source distance (Fig. 4). This ability is independent of wave amplitude and thus also of frequency range.

     
  3. 3.

    When presented click signals the topminnows move on an average of 6.1 ± 1.9 cm (mean and S.D.) towards the wave center, which is 6.5–7.5 cm away from them, or 11.8 ±3.3 cm at a source distance of 14.5–15.5 cm. However, presentation of a wave signal at a source distance of 7 cm, the frequency modulation of which resembles a click signal originating at a source distance of 15 cm, causes the fish to move forward 10.8 ±4.5 cm (Fig. 5).

     
  4. 4.

    A. lineatus also reacts to altered single wave trains, which are upward frequency modulated. But there is no or only a weak distance determination (Fig. 6).

     
  5. 5.

    For different kinds of wave production the frequency modulation within a click may be slightly different at identical source distances (Fig. 7). But, in general, looking at the first 7–9 wave cycles (which are used byA. lineatus for prey localization) the frequency modulation in a single wave train mainly depends on source distance, but not on kind of wave production (tested for the source distances 5, 10, and 15 cm, Fig. 8).

     
  6. 6.

    Long lasting wave signals are preceded by a click stimulus (Fig. 7 right half). Independent of the long lasting wave pattern this preceding click might be used byA. lineatus for distance localization.

     
  7. 7.

    It is assumed thatA. lineatus analyzes the amplitude spectrum of a wave signal for discrimination of prey and nonprey waves and that the frequency modulation of the first 7–9 wave cycles of a wave train is used to obtain information about source distance.

     

Keywords

Frequency Modulation Surface Wave Wave Signal Wave Train Source Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berestynska-Wilczek M (1962) Investigations of the sensitivity of the spidersPirata piraticus (Clerck) to vibrations of the water surface. Acta Biol Cracov Ser Zool 5:263–277Google Scholar
  2. Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface-feeding fishAplocheilus lineatus. J Comp Physiol 140:163–172Google Scholar
  3. Bleckmann H, Topp G (1981) Surface wave sensitivity of the lateral line system of the topminnowAplocheilus lineatus. Naturwissenschaften 68:624–625Google Scholar
  4. Bleckmann H, Schwartz E (1981) Reaction time of the topminnowAplocheilus lineatus to surface waves determined by video- and electromyogram recordings. Experientia 37:362–363Google Scholar
  5. Bleckmann H, Waldner I, Schwartz E (1981) Frequency discrimination of the surface-feeding fishAplocheilus lineatus — a prerequisite for prey localization? J Comp Physiol 143:485–490Google Scholar
  6. Carico JE (1973) The nearctic species of the genusDolomedes (Araneae: Pisauridae). Bull Mus Comp Zool 144:435–488Google Scholar
  7. Gettmann WW (1977) Ökologische Untersuchungen zum Beutefang und Analyse der Beutefanghandlung bei Wolfsspinnen der GattungPirata (Araneae: Lycosidae). Dissertation, Universität Kaiserslautern, FRGGoogle Scholar
  8. Görner P (1973) The importance of the lateral-line system for the perception of surface waves in the claw toad,Xenopus laevis Daudin. Experientia 29:295Google Scholar
  9. Görner P (1976) Source localization with labyrinth and lateral line in the clawed toad (Xenopus laevis). In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 171–184Google Scholar
  10. Grood W (1977) Oberflächenwellen zur Reizung von Scitenlinienorganen bei Fischen und Amphibien. Diplomarbeit, Universität Giessen, FRGGoogle Scholar
  11. Kramer G (1933) Untersuchungen über die Sinnesleistungen und das Orientierungsverhalten vonXenopus laevis. Zool Jahrb Abt Physiol 52:629–676Google Scholar
  12. Kroese ABA, Zalm JM van der, Bercken J van den (1980) Extracellular receptor potentials from the lateral-line organ ofXenopus laevis. J Exp Biol 86:63–77Google Scholar
  13. Lang HH (1980a) Surface wave discrimination between prey and nonprey by the back swimmerNotonecta glauca L. (Hemiptera, Heteroptera). Behav Ecol Sociobiol 6:233–246Google Scholar
  14. Lang HH (1981b) Surface wave sensitivity of the back swimmerNotonecta glauca. Naturwissenschaften 67:204–205Google Scholar
  15. Markl H, Wiese K (1969) Die Empfindlichkeit des RückenschwimmersNotonecta glauca L. für Oberflächenwellen des Wassers. Z Vergl Physiol 62:413–420Google Scholar
  16. Müller U (1981) Der Einfluß einzelner Neuromasten des Scitenliniensystems auf die Lokalisationsleistung des StreifenhechtlingsAplocheilus lineatus. Diplomarbeit, Universität Giessen, FRGGoogle Scholar
  17. Murphey RK (1971a) Motor control of orientation to prey by the water strider,Gerris remigis. Z Vergl Physiol 72:150–167Google Scholar
  18. Murphey RK (1971b) Sensory aspects of the control of orientation to prey by the water strider,Gerris remigis. Z Vergl Physiol 72:168–185Google Scholar
  19. Murphey RK (1973) Mutual inhibition and the organization of a non-visual orientation inNotonecta. J Comp Physiol 84:31–40Google Scholar
  20. Rath M (1980) Zur Richtungslokalisation von Beuteobjekten beiAplocheilus lineatus. Ausschaltexperimente und ihre mathematische Grundlagen. Staatsexamensarbeit, Universität Giessen, FRGGoogle Scholar
  21. Rechenberg I (1973) Evolutionsstrategie. Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann, StuttgartGoogle Scholar
  22. Rudolph P (1967) Zum Ortungsverfahren vonGyrinus substriatus Steph. Z Vergl Physiol 56:341–375Google Scholar
  23. Schwartz E (1965) Bau und Funktion der Scitenlinie des Streifenhechtlings (Aplocheilus lineatus Cuv. u. Val.). Z Vergl Physiol 50:55–87Google Scholar
  24. Schwartz E (1971) Die Ortung von Wasserwellen durch Oberflächenfische. Z Vergl Physiol 74:64–80Google Scholar
  25. Schwartz E, Hasler AD (1966) Perception of surface waves by the blackstripe topminnow,Fundulus notatus. J Fish Res Board Can 23:1331–1352Google Scholar
  26. Sommerfeld A (1970) Vorlesungen über theoretische Physik, Bd. 2, Mechanik der deformierbaren Medien. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  27. Topp G (1980) Durch Wasserwellen ausgelöstes Antwortverhalten primärer Scitenlinienafferenzen beim OberflächenfischAplocheilus lineatus (Cyprinodontidae). Dissertation, Universität Giessen, FRGGoogle Scholar
  28. Unbehauen H (1980) Morphologische und elektrophysiologische Untersuchungen zur Wirkung von Wasserwellen auf das Scitenlinienorgan des Streifenhechtlings (Aplocheilus lineatus). Dissertation, Universität Tübingen, FRGGoogle Scholar
  29. Wiese K (1969) Wahrnehmung von Oberflächenwellen geringer Amplitude durch den Wasserläufer. Naturwissenschaften 56:575Google Scholar
  30. Wiese K (1972) Das mechanorezeptorische Beuteortungssystem vonNotonecta. I. Die Funktion des tarsalen Scolopidialorgans. J Comp Physiol 78:83–102Google Scholar
  31. Wiese K (1974) The mechanoreceptive system of prey localization inNotonecta. II. The prinziple of prey localization. J Comp Physiol 92:317–325Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Horst Bleckmann
    • 1
  • Erich Schwartz
    • 1
  1. 1.Institut für TierphysiologieGiessenGermany

Personalised recommendations