Water, Air, & Soil Pollution

, Volume 90, Issue 1–2, pp 281–294 | Cite as

The effect of membrane filtration on dissolved trace element concentrations

  • Arthur J. Horowitz
  • Ken R. Lum
  • John R. Garbarino
  • Gwendy E. M. Hall
  • Claire Lemieux
  • Charles R. Demas
Article

Abstract

The almost universally accepted operational definition for dissolved constituents is based on processing

The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-μm membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the ‘disolved’ concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally-associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore-sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-μm membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.

Keywords

membrane filters filtration filtration artifacts dissolved major elements trace elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. APHA-AW WA-WPCF: 1989,Standard Methods for the Examination of Water and Wastewater, 17th Ed., 1193p.Google Scholar
  2. ASTM: 1995,Annual Book of ASTM Standards, Vol 11.01, Water (I), 814p.Google Scholar
  3. Beckett, R.; Nicholson, G.; Hart, B.T.; et al.: 1988,Water Research,22, p. 1535 -1545CrossRefGoogle Scholar
  4. Benoit, G.: 1994,Environmental Science & Technology,22, 1987–1991CrossRefGoogle Scholar
  5. Brewer, P.G. and Spencer, D.W.: 1970,Trace Metal Intercalibration Study. , Woods Hole Oceanographic Institute, Report No. 70-62.Google Scholar
  6. Bruland K.: 1983, Trace Elements in Sea-Water, InChemical Oceanography,5, (Edited by Riley, J., Chester, R.), 157–220.Google Scholar
  7. Flegal A. and Coale K.: 1989, Water Resources Bulletin,25, 1275.CrossRefGoogle Scholar
  8. Hoffman, M.R., Yost, E.C., Eisenreich, S.P., and Maier, W.P.: 1981,Environmental Science and Technology,15, 655–661.CrossRefGoogle Scholar
  9. Horowitz, A.J., Demas, C.R., Fitzgerald, K.K.,et al.,: 1994,U.S. Geological Survey Open-File Report No. 94-539, 56p.Google Scholar
  10. Horowitz, A.J., Elrick, K.A., and Colberg, M.R., 1992,Water Research,26, 753–763.CrossRefGoogle Scholar
  11. Jones, P.G.W.: 1978,International Council for the Exploration of the Seas. Copenhagen, ICES, CM 19787/E:16.Google Scholar
  12. Karlsson, S., Peterson, A.;,Hakansson, K., and Ledin, A.: 1994,The Science of the Total Environment,194, 215–223.CrossRefGoogle Scholar
  13. Laxen D. and Chandler, I.: 1982,Analytical Chemistry,54, 1350–1355.CrossRefGoogle Scholar
  14. Ledin, A.: 1993,Colloidal Carrier Substances — Properties and Impact on Trace Metal Distribution in Natural Waters., Linkoping Studies in Arts and Science No. 91.Google Scholar
  15. Martin, J.M., and Meybeck, M.: 1979,Marine Chemistry,7, 173–206.CrossRefGoogle Scholar
  16. Nriagu, J.O., Lawson, G., Wong, H.K.T., and Azcue, J.M.:1993,Journal of Great Lakes Research,19, 175–182.CrossRefGoogle Scholar
  17. Office of Water Data Coordination: 1984,National Handbook of Recommended Methods for Water-Data Acquisition., Chapter 5, 5-14-5-15.Google Scholar
  18. Rees, T.F. and Ranville, J.F.: 1990,Journal of Contaminant Hydrology,6, 241–250.CrossRefGoogle Scholar
  19. Shiller A. and Boyle E.:1987,Geochimica et Cosmochimica Acta,51, 3273–3277.CrossRefGoogle Scholar
  20. Taylor, H.R. and Shiller, A.M.:1995,Environmental Science and Technology,29, 1313–1318.CrossRefGoogle Scholar
  21. U.S. Environmental Protection Agency: 1983,Methods for Chemical Analysis of Water and Wastes EPA-600/479-020, 375 p.Google Scholar
  22. Wagemann, R. and Brunskill G.:1975,International Journal of Environmental Analytical Chemistry,4, 75–84.CrossRefGoogle Scholar
  23. Windom, H., Byrd, H., Smith, Jr. H., and Huan, F.: 1991,Environmental Science & Technology,25, 1137–1142.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Arthur J. Horowitz
    • 1
  • Ken R. Lum
    • 2
  • John R. Garbarino
    • 3
  • Gwendy E. M. Hall
    • 4
  • Claire Lemieux
    • 2
  • Charles R. Demas
    • 5
  1. 1.U.S. Geological Survey, Peachtree Business CenterAtlantaUSA
  2. 2.Centre Saint-Laurent, Environment CanadaMontrealCanada
  3. 3.U.S. Geological Survey, Branch of Analytical ServicesArvadaUSA
  4. 4.Geological Survey of CanadaOttawaCanada
  5. 5.U.S. Geological SurveyBaton RougeUSA
  6. 6.I.U.C.N.-World Conservation UnionMontrealCanada
  7. 7.MultisourcesMontrealCanada

Personalised recommendations