Journal of comparative physiology

, Volume 96, Issue 4, pp 343–356 | Cite as

Spectral selectivity of visual response alterations mediated by interconversions of native and intermediate photopigments inDrosophila

  • William S. Stark


Recent studies have indicated that intense short wavelength stimulation in flies converts rhodopsin to a longlived metarhodopsin while decreasing visual sensitivity and electroretinographic (ERG) responsivity. Long wavelength stimulation reverses both visual pigment and ERG alterations. In this study of ERG's in white-eyedDrosophila, spectral sensitivities were obtained following intense visible and ultraviolet short wavelength stimuli. Both stimuli decreased sensitivity to all wavelengths while ultraviolet light also selectively decreased ultraviolet sensitivity (Fig. 1). These results isolated three sensitivity components contributing to the ERG in flies: (1) the dark adapted sensitivity (Fig. 1); (2) the residual sensitivity remaining subsequent to intense ultraviolet stimulation (Fig. 1); and (3) the ultraviolet sensitivity specifically abolished by intense ultraviolet stimulation (Fig. 2). Further evidence shows that the three components are probably receptor-specific; the first two resemble recent fly receptor spectral sensitivity data (e.g. Eckert, 1971) while the third represents a separate ultraviolet receptor. Linear reciprocity of time and intensity to alter the ERG responsivity was found over considerable ranges for long wavelength (Fig. 3) and short wavelength (Fig. 4) induced responsivity alterations. ERG action spectra were obtained for altering responsivity (Fig. 5). The action spectrum for decreasing responsivity was roughly parallel with the dark adapted spectral sensitivity for wavelengths below 500 nm. The action spectrum for reestablishing responsivity had a peak near 570 nm and agreed with previous determinations of spectral characteristics of fly metarhodopsin. The action spectra determined were probably based on photopigment interconversions in the 1–6 receptor system. Long wavelength reconversion of metarhodopsin to rhodopsin may explain the high ultraviolet and low red sensitivities and the functional significance of red eye color pigments in flies.


Spectral Sensitivity Action Spectrum Visual Pigment Spectral Selectivity Wavelength Stimulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bishop, L. G.: An ultraviolet photoreceptor in a dipteran compound eye. J. comp. Physiol.91, 267–275 (1974)Google Scholar
  2. Burkhardt, D.: Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. Symp. Soc. exp. Biol.16, 86–109 (1962)Google Scholar
  3. Cosens, D., Briscoe, D.: A switch phenomenon in the compound eye of the white-eyed mutant ofDrosophila melanogaster. J. Insect Physiol.18, 627–632 (1972)Google Scholar
  4. Dartnall, H. J. A.: The interpretation of spectral sensitivity curves. Brit. med. Bull.9, 24–30 (1953)Google Scholar
  5. Eekert, H.: Die spektrale Empfindlichkeit des Komplexauges vonMusca (Bestimmung aus Messungen der optomotorischen Reaktion). Kybernetik9, 145–156 (1971)Google Scholar
  6. Goldsmith, T. H.: Do flies have a red receptor ? J. gen. Physiol.49, 265–287 (1965)Google Scholar
  7. Goldsmith, T. H.: Metarhodopsins and the visual cycle of arthropods. In: Association for Research in Vision and Ophthalmology program, p. 60 (1974). (Abstract)Google Scholar
  8. Hamdorf, K., Höglund, G., Langer, H.: Photoregeneration of visual pigments in a moth: a microphotometric study. J. comp. Physiol.86, 247–263 (1973)Google Scholar
  9. Hamdorf, K., Paulsen, R., Schwemer, J.: Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochemistry and physiology of visual pigments (ed. H. Langer), p. 155–166. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  10. Hamdorf, K., Rosner, G.: Adaptation und Photoregeneration im Fliegenauge. J. comp. Physiol.86, 281–292 (1973)Google Scholar
  11. Hamdorf, K., Schwemer, J., Gogala, M.: Insect visual pigment sensitive to ultraviolet light. Nature (Lond.)231, 458–459 (1971)Google Scholar
  12. Hillman, P., Hochstein, S., Minke, B.: A visual pigment with two physiologically active stable states. Science (N.Y.)175, 1486–1488 (1972)Google Scholar
  13. Hillman, P., Dodge, F. A., Hochstein, S., Knight, B. W., Minke, B.: Rapid dark recovery of the invertebrate early receptor potential. J. gen. Physiol.62, 77–86 (1973)Google Scholar
  14. Hochstein, S., Minke, B., Hillman, P.: Antagonistic components of the late receptor potential in the barnacle photoreeeptor arising from different stages of the pigment process. J. gen. Physiol.62, 105–128 (1973)Google Scholar
  15. Langer, H., Thorell, B.: Microspectrophotometric assay of visual pigments in single rhabdomeres of the insect eye. In: The functional organization of the compound eye (ed. C. G. Bernhard), p. 145–149. Oxford-New York: Pergamon Press 1966Google Scholar
  16. Lindsley, D. L., Grell, E. H.: Genetic variations ofDrosophila melanogaster Oak Ridge, Tennessee: Oak Ridge National Laboratory 1968Google Scholar
  17. McCann, G. D., Arnett, D. W.: Spectral and polarization sensitivity of the dipteran visual system. J. gen. Physiol.59, 534–558 (1972)Google Scholar
  18. Minke, B., Hochstein, S., Hillman, P.: Antagonistic process as a source of visible-light suppression of afterpotential inLimulus UV receptors. J. gen. Physiol.62, 787–791 (1973a)Google Scholar
  19. Minke, B., Hochstem, S., Hillman, P.: Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J. gen. Physiol.62, 87–104 (1973b)Google Scholar
  20. Nolte, J., Brown, J. E.: Ultraviolet-induced sensitivity to visible light in ultraviolet receptors ofLimulus. J. gen. Physiol.59, 186–200 (1972)Google Scholar
  21. Ostroy, S. E., Wilson, M., Pak, W. L.:Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. Biochem. biophys. Res. Commun.59, 960–966 (1974)Google Scholar
  22. Pak, W. L.: Mutants affecting the vision ofDrosophila melanogaster. In: Handbook of genetics 3. (ed. R. C. King). New York: Plenum Publishing Corp. 1974 (in press)Google Scholar
  23. Pak, W. L., Grossfield, J., Arnold, K. S.: Mutants of the visual pathway ofDrosophila melanogaster. Nature (Lond.)227, 518–520 (1970)Google Scholar
  24. Pak, W. L., Lidington, K. J.: Fast electrical potential from a long-lived, long-wavelength photoproduct of fly visual pigment. J. gen. Physiol.63, 740–756 (1974)Google Scholar
  25. Schümperli, R. A.: Evidence for colour vision inDrosophila through spontaneous phototactic choice behavior. J. comp. Physiol.86, 77–94 (1973)Google Scholar
  26. Snyder, A. W., Miller, W. H.: Fly colour vision. Vision Res.12, 1389–1396 (1972)Google Scholar
  27. Snyder, A. W., Pask, C.: Spectral sensitivity of dipteran retinula cells. J. comp. Physiol.84, 59–7 (1973)Google Scholar
  28. Stark, W. S.: The effect of eye colour pigments on the action spectrum ofDrosophila. J. Insect Physiol.19, 999–1006 (1973)Google Scholar
  29. Stark, W. S.: Light-elicited wavelength-specific shifts in the ERG visual sensitivity ofDrosophila. Drosoph. Inf. Serv.49, 69 (1972)Google Scholar
  30. Stark, W. S.: Physiological responsivity shifts ofDrosophila visual system. In: Society for Neuroscience Program and Abstracts, p. 432 (1974). (Abstract)Google Scholar
  31. Stark, W. S., Wasserman, G. S.: Wavelength-specific ERG characteristics of pigmented- and white-eyed strains ofDrosophila. J. comp. Physiol.91, 427–441 (1974)Google Scholar
  32. Stavenga, D. G., Zantema, A., Kuiper, J. W.: Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and physiology of visual pigments (ed. H. Langer), p. 175–179. Berlin-Heidelberg-New York: Springer 1973Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • William S. Stark
    • 1
  1. 1.Department of PsychologyThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations