Advertisement

Journal of comparative physiology

, Volume 148, Issue 2, pp 187–194 | Cite as

Vibration sensitivity of pretarsal slit sensilla in the spider leg

  • Jochen Speck
  • Friedrich G. Barth
Article

Summary

  1. 1.

    The two single slit sensilla on the pretarsus of the spider leg (Cupiennius salei Keys.) are vibration sensitive. Due to their arrangement they are also stimulated effectively by active downward movement of the pretarsus which may result from muscular activity directly or from an increase of the hemolymph pressure (Figs. 1, 2, 3).

     
  2. 2.

    The slits are not tuned to a restricted frequency range. Their threshold displacement was determined electrophysiologically from 0.01 Hz to 1 kHz and found to be higher than in the slits of the metatarsal organ by roughly two orders of magnitude. The threshold decreases only slightly up to about 40 Hz but much more steeply at higher frequencies. The minimal threshold value for displacement within the tested frequency range was found at 1 kHz and measured 2 × 10−5 cm. The minimal threshold value for acceleration found at 0.01 Hz was 0.3 × 10−9 cm/s2 (Fig. 4a). Thresholds vary with different preset tensions in the cuticle surrounding the slits (Fig. 5).

     
  3. 3.

    The shapes of the threshold curves are similar for dorsoventral and lateral displacement of the pretarsus (Fig. 4b). Values for lateral displacement are at most 3 dB higher than those for dorsoventral displacement.

     
  4. 4.

    As in other slit sensilla the frequency response of the pretarsal slits follows a power functiony(f) =fk (Fig. 7). The constantk varies between 0.39 and 0.44, reflecting receptor properties intermediate between those of a frequency-independent amplitude receptor (k = 0) and those of a velocity receptor (k = 1). Beyond 10 Hz the response of the receptor saturates. Phase locking between stimulus and response is observed up to about 100 Hz (stimuli 10 dB above threshold).

     

Keywords

Frequency Response Lateral Displacement Downward Movement Minimal Threshold Muscular Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barth FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z Vergl Physiol 55:407–449Google Scholar
  2. Barth FG (1972a) Die Physiologie der Spaltsinnesorgane. I. Modellversuche zur Rolle des cuticularen Spaltes beim Reiztransport. J Comp Physiol 78:315–336Google Scholar
  3. Barth FG (1972b) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanorezeptors. J Comp Physiol 81:159–186Google Scholar
  4. Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens D (eds) Sense organs. Blackie, Glasgow, pp 112–141Google Scholar
  5. Barth FG, Geethabali (1982) Spider vibration receptors: Threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148:175–185Google Scholar
  6. Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane vonCupiennius salei Keys. Chelicerata (Araneae). Z Morphol Ökol Tiere 68:343–368Google Scholar
  7. Barth FG, Seyfarth E-A (1979)Cupiennius salei Keys. (Araneae) in the highlands of central Guatemala. J Arachnol 7:255–263Google Scholar
  8. Barth FG, Stagl J (1976) The slit sense organs of Arachnids. A comparative study of their topography on the walking legs (Chelicerata, Arachnida). Zoomorphologie 86:1–23Google Scholar
  9. Bohnenberger J (1981) Matched transfer characteristics of single units in a compound slit sense organ. J Comp Physiol 142:391–402Google Scholar
  10. Foelix RF (1970) Structure and function of tarsal sensilla in the spiderAraneus diadematus. J Exp Zool 175:99–124Google Scholar
  11. Frank H (1957) Untersuchung zur funktionellen Anatomie der lokomotorischen Extremitäten vonZygiella-x-notata, einer Radnetzspinne. Zool Jahrb Abt Anat Ontog Tiere 76:423–460Google Scholar
  12. Heinzel HG (1978) Aerodynamische, mechanische und elektrophysiologische Untersuchung der Heuschreckenantenne als Luftströmungssinnesorgan. Dissertation, Universität DüsseldorfGoogle Scholar
  13. Hener T (1976) Spaltsinnesorgane und Vibrationssinn beim Beutefang der SpinneCupiennius salei Keys. Diplomarbeit, Universität MünchenGoogle Scholar
  14. Klärner D, Barth FG (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae). J Comp Physiol (in press)Google Scholar
  15. Liesenfeld FJ (1956) Untersuchungen am Netz und über den Erschütterungssinn vonZygiella-x-notata (Araneidae). Z Vergl Physiol 38:563–592Google Scholar
  16. Liesenfeld FJ (1961) Über Leistung und Sitz des Erschütterungssinnes von Netzspinnen. Biol Zentralbl 80:465–475Google Scholar
  17. Loewe R, Linzen B, Stackelberg W von (1970) Die gelösten Stoffe in der Haemolymphe einer Spinne,Cupiennius salei Keys. Z Vergl Physiol 66:27–34Google Scholar
  18. Mann DW, Chapman KM (1975) Component mechanisms of sensitivity and adaptation in an insect mechanoreceptor. Brain Res 97:331–336Google Scholar
  19. Masters MW, Markl H (1981) Vibration signal transmission in spider orb webs. Science 213:363–365Google Scholar
  20. Melchers M (1963) Zur Biologie und zum Verhalten vonCupiennius salei, einer amerikanischen Ctenide. Zool Jahrb Abt Syst Oekol Geogr Tiere 91:1–90Google Scholar
  21. Ruhland M, Rathmayer W (1978) Die Beinmuskulatur und ihre Innvervation bei der VogelspinneDugesiella hentzi (Ch.) (Araneae, Aviculariidae). Zoomorphologie 89:33–46Google Scholar
  22. Seyfarth E-A (1978) Lyriform slit sense organs and muscle reflexes in the spider leg. J Comp Physiol 125:45–57Google Scholar
  23. Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183:161–172Google Scholar
  24. Vogel H (1923) Über die Spaltsinnesorgane der Radnetzspinnen. Jena Z Med Naturwiss 59:171–208Google Scholar
  25. Walcott C, Kloot WG van der (1959) The physiology of the spider vibration receptor. J Exp Zool 141:191–244Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Jochen Speck
    • 1
  • Friedrich G. Barth
    • 1
  1. 1.Gruppe SinnesphysiologieZoologisches Institut der Johann Wolfgang Goethe-UniversitätFrankfurt am Main 1Federal Republic of Germany

Personalised recommendations