Skip to main content
Log in

Kinetics and mechanism of formation and dissociation of copper(II) and nickel(II) complexes of the Schiff base bis(acetylacetone)ethylenediimine in aqueous-organic solvent media

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

In NH4NO3+NH4OH buffered 10% (v/v) dioxan-water media (pH 7.0–8.5), thePseudo-first-order rate constant for the formation of the title complexes M(baen),i.e. ML, conforms to the equation 1/kobs=1/k+1/(kKo.s · TL), where TL stands for the total ligand concentration in the solution, Ko.s is the equilibrium constant for the formation of an intermediate outer sphere complex and k is the rate constant for the formation of the complex ML from the intermediate. Under the experimental conditions the free ligand (pKa>14) exists virtually exclusively in the undissociated form (baenH2 or LH2) which is present mostly as a keto-amine in the internally hydrogen-bonded state. Although the observed formation-rate ratio kCu/kNi is of the order of 105, as expected for systems having “normal” behaviour, the individual rate constants are very low (at 25°C, kCu=50 s−1 and kNi=4.7×10−4s−1) due to the highly negative ΔS≠ values (−84.2±3.3 JK−1M−1 for CuL and −105.8±4.1 JK−1M−1 for NiL); the much slower rate of formation of the nickel(II) complex is due to higher ΔH≠ value (41.2±1.0 kJM−1 for CuL and 78.2±1.2 kJM−1 for NiL) and more negative ΔS≠ value compared to that of CuL. The Ko.s values are much higher than expected for simple outer-sphere association between [M(H2O)6] and LH2 and may be due to hydrogen bonding interaction.

In acid media ([H+], 0.01–0.04 M) these complexes M(baen) dissociate very rapidly into the [M(H2O)6]2+ species and baenH2, followed by a much slower hydrolytic cleavage of the ligand into its components,viz. acetylacetone and ethylenediamine (protonated). For the dissociation of the complexes kobs=k1[H+]+k2[H+]2. The reactions have been studied in 10% (v/v) dioxan-water media and also ethanolwater media of varying ethanol content (10–25% v/v) and the results are in conformity with a solvent-assisted dissociativeinterchange mechanism involving the protonated complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Eigen,Z. Electrochem., 64, 115 (1960).

    Google Scholar 

  2. M. Eigen,Pure and Appl. Chem., 6, 97 (1963).

    Google Scholar 

  3. C. H. Langford and H. B. Gray,Ligand Substitution Processes, Benjamin, New York, p. 7, 1965.

    Google Scholar 

  4. A. G. Desai, H. W. Dodgen and J. P. Hunt,J. Am. Chem. Soc., 91, 5001 (1969);Ibid, 92, 798 (1970).

    Google Scholar 

  5. T. S. Roche and R. G. Wilkins,J. Am. Chem. Soc., 96, 5082 (1974).

    Google Scholar 

  6. B. Perlmutter-Hayman and R. Shinar,Inorg. Chem., 15, 2932 (1976).

    Google Scholar 

  7. G. O. Dudek and R. H. Holm,J. Am. Chem. Soc., 83, 2099 (1961).

    Google Scholar 

  8. M. Honda and G. Schwarzenbach,Helv. Chim. Acta, 40, 27 (1957).

    Google Scholar 

  9. D. F. Martin and F. F. Cantwell,J. Inorg. Nucl. Chem., 26, 2219 (1964).

    Google Scholar 

  10. D. F. Martin and F. F. Cantwell,J. Inorg. Nucl. Chem., 30, 1931 (1968).

    Google Scholar 

  11. W. F. K. Wynne-Jones and H. Eyring,J. Chem. Phys., 3, 492 (1935);Cf. S. Glasstone, K. J. Laidler and H. Eyring,The Theory of Rate Processes, p. 196, McGraw-Hill, New York, 1941.

    Google Scholar 

  12. R. G. Wilkins,Acc. Chem. Res., 3, 408 (1970.

    Google Scholar 

  13. M. Grant, H. W. Dodgen and J. P. Hunt,Inorg. Chem., 10, 71 (1971);idem, J. Am. Chem. Soc., 92, 2321 (1970).

    Google Scholar 

  14. J. C. Cassatt, W. A. Johnson, L. M. Smith and R. G. Wilkins,J. Am. Chem. Soc., 94, 8399 (1972).

    Google Scholar 

  15. R. W. Taylor, H. K. Stephen and D. B. Rorabacher,Inorg. Chem., 13, 1282 (1974).

    Google Scholar 

  16. T. S. Turan,Inorg. Chem., 13, 1584 (1974).

    Google Scholar 

  17. Cf. D. D. Perrin inStability Constants of Metal Ion Complexes, Part B,Organic Ligands, I.U.P.A.C. Data Series, No. 22, 2nd Edit., Ser. No. 120, p. 61, Pergamon Press, Oxford, 1969.

    Google Scholar 

  18. .

    Google Scholar 

  19. D. P. Fay, A. R. Nichols, Jr. and N. Sutin,Inorg. Chem., 10, 2096 (1971).

    Google Scholar 

  20. D. Banerjea and B. Chakravarty,J. Inorg. Nucl. Chem., 26, 1233 (1964).

    Google Scholar 

  21. D. Banerjea and P. Banerjee,Z. Anorg. Allg. Chem., 393, 295 (1972).

    Google Scholar 

  22. D. Banerjea,Transition Met. Chem., 7, 22 (1982).

    Google Scholar 

  23. R. N. Banerjee, S. Gangopadhyay, A. K. Banerjee and D. Banerjea,J. Coord. Chem., 12, 287 (1983).

    Google Scholar 

  24. D. Banerjea,Fundamental Principles of Inorganic Chemistry, 2nd Edit., p. 357, Sultan Chand & Sons, New Delhi, 1984.

    Google Scholar 

  25. . p. 366.

    Google Scholar 

  26. F. Basolo and R. G. Pearson,Mechanisms of Inorganic Reactions, 2nd Edit., p. 150, John Wiley, New York, 1967.

    Google Scholar 

  27. L. J. Kirschenbaum and K. Kustin,J. Chem. Soc. A, 684 (1970).

    Google Scholar 

  28. V. S. Sharma and D. L. Leussing,Inorg. Chem., 11, 138 (1972).

    Google Scholar 

  29. M. Munakata and K. Yamada,Bull. Chem. Soc. Jpn 51, 500 (1978).

    Google Scholar 

  30. M. J. Hynes and B. D. O'Regan,J. Chem. Soc., Dalton Trans., 162 (1979).

  31. R. G. Pearson and J. W. Moore,Inorg. Chem., 5, 1523, 1528 (1966).

    Google Scholar 

  32. J. Leffler,J. Org. Chem., 20, 1202 (1955).

    Google Scholar 

  33. . p. 75.

    Google Scholar 

  34. C. Reischerdt,Angew. Chem., 18, 98 (1979).

    Google Scholar 

  35. E. Grunwald and S. Winstein,J. Am. Chem. Soc., 70, 846 (1948).

    Google Scholar 

  36. E. M. Kosower,J. Am. Chem. Soc., 78, 5700 (1957).

    Google Scholar 

  37. K. Dimroth, C. Reichardt, T. Seipmann and F. Bohlmann,Annalen Der. Chemie, 661, 1 (1963).

    Google Scholar 

  38. K. Dimroth and C. Reichardt,Annalen Der. Chemie, 727, 93 (1969).

    Google Scholar 

  39. Cf. J. Burgess,Inorganic Reaction Mechanism, Specialist Periodic Report, Vol. 1, p. 163, The Chemical Society, London, 1971.

    Google Scholar 

  40. G. T. Morgan and J. D. M. Smith,J. Chem. Soc.,920 (1926).

  41. P. J. McCarthy, R. J. Hovey, K. Ueno and A. E. Martell,J. Am. Chem. Soc., 77, 5820 (1955).

    Google Scholar 

  42. A. E. Martell, R. L. Belford and M. Calvin,J. Inorg. Nucl. Chem., 5, 170 (1958).

    Google Scholar 

  43. K. Ueno and A. E. Martell,J. Phys. Chem., 61, 257 (1957).

    Google Scholar 

  44. L. F. Fieser,Experiments in Organic Chemistry, 2nd. Edit., Heath, New York, 1941.

    Google Scholar 

  45. D. Banerjea and P. Chaudhuri,Z. Anorg. Allgem. Chem., 372, 268 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangopadhyay, S., Banerjee, R.N. & Banerjea, D. Kinetics and mechanism of formation and dissociation of copper(II) and nickel(II) complexes of the Schiff base bis(acetylacetone)ethylenediimine in aqueous-organic solvent media. Transition Met Chem 10, 310–315 (1985). https://doi.org/10.1007/BF00619017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00619017

Keywords

Navigation