Skip to main content
Log in

Mineral formation from aqueous solution. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural waters

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Naturally occurring waters in the oxidized zone of a Pb-Zn orebody have been collected where they are responsible for the formation of solid hydrozincite, Zn5(OH)6(CO3)2. The solutions were analysed and the computer programme COMICS used to describe the complex ion distribution in each case. From the results, the solubility product for hydrozincite has been recalculated as log KSP=−14.9(0.1). This value has been used to calculate the fields of stability of some secondary zinc minerals and illustrates the reason for the apparently anomalous stability of hydrozincite in nature, compared with what might be expected from considerations of earlier data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Palache, H. Berman and C. Frondel,The System of Mineralogy of J. D. Dana and E. S. Dana, 7th Edit., Wiley, New York, 1951, 3 vols; M. H. Hey,An Index of Mineral Species and Varieties, The British Museum, London, 1950, and supplements thereto; M. C. Halliman and W. H. Huang,American Mineralogist, Index to Vols 51–60 with Index of New Mineral Names by M. Fleischer (1976).

    Google Scholar 

  2. R. M. Garrels and C. L. Christ,Solutions Minerals and Equilibria, Harper and Row, New York, 1965, pp. 388–395.

    Google Scholar 

  3. C. E. Baes Jr. and R. E. Mesmer,The Hydrolysis of Cations, Wiley, New York, 1976.

    Google Scholar 

  4. E. J. Reardon and D. Langmuir,Geochim. Cosmochim. Acta, 40, 549 (1976); E. J. Rearden,J. Phys. Chem., 79, 422 (1975).

    Google Scholar 

  5. R. M. Garrels and M. E. Thompson,Amer. J. Sci., 260, 57 (1962).

    Google Scholar 

  6. J. D. Hem,Water Resources Res., 8, 661 (1972).

    Google Scholar 

  7. A. W. Mann and R. L. Deutscher,Chem. Geol., 19, 253 (1977).

    Google Scholar 

  8. A. W. Rose,Econ. Geol, 71, 1036 (1976).

    Google Scholar 

  9. J. H. Jenkins, Thesis, Cardiff, 1977.

  10. A. A. Archer,Trans. Inst. Min. Metall., Symp. 11, 259 (1958).

    Google Scholar 

  11. H. Dewey and B. Smith,Spec. Rep. Min. Res. Great Britain, No. 23 (1922).

  12. M. J. Taras, A. E. Greenberg, R. D. Hoak and M. C. Rand (Eds.),Standard Methods for the Examination of Water and Waste Water, 13th Edit., Am. Pub. Health Assoc., Washington D. C., 1971.

    Google Scholar 

  13. D. D. Perrin and I. G. Sayce,Talanta, 14, 833 (1967).

    Google Scholar 

  14. A. H. Truesdell and B. F. Jones,J. Res. U.S. Geol. Surv., 2, 238 (1974).

    Google Scholar 

  15. J. Kielland,J. Am. Chem. Soc., 59, 1675 (1937).

    Google Scholar 

  16. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions, Reinhold, New York, 1958.

    Google Scholar 

  17. M. Randell and C. F. Failey,Chem. Rev., 4, 271 (1927).

    Google Scholar 

  18. M. Randell and C. F. Failey,Chem. Rev., 4, 285 (1927).

    Google Scholar 

  19. M. Randell and C. F. Failey,Chem. Rev., 4, 291 (1927).

    Google Scholar 

  20. D. R. Kester, Thesis, Oregon (1969).

  21. J. D. Riddell, D. J. Lockwood and D. E. Irish,Can. J. Chem., 50, 2951 (1972).

    Google Scholar 

  22. L. B. Yeatts and W. L. Marshall,J. Phys. Chem., 73, 81 (1969).

    Google Scholar 

  23. J. G. Kirkwood,Chem. Rev., 24, 233 (1939).

    Google Scholar 

  24. A. Zirino and S. Yamamoto,Limn. Ocean., 17, 661 (1972).

    Google Scholar 

  25. D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey and R. H. Schumm,Technical Note 270-4, National Bureau of Standards (1969) andTechnical Note 270-3, National Bureau of Standards (1968), U.S. Dept. of Commerce, U.S. Govt. Printing Office, Washington D. C.

  26. H. C. Hegelson,J. Phys. Chem., 71, 3121 (1967).

    Google Scholar 

  27. W. Feitknecht and H. R. Oswald,Helv. Chim. Acta, 49, 334 (1965).

    Google Scholar 

  28. J. W. Mellor,A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans, Green and Co., London, 1957, vol. 4.

    Google Scholar 

  29. J. Neczaj-Hruzewicz, W. Janusz and J. Szczypa,Gazz. Chim. Ilal., 107, 461 (1977).

    Google Scholar 

  30. J. L. Jambor,Can. Mineralogist, 8, 92 (1964).

    Google Scholar 

  31. R. Grauer and W. Feitknecht,Corr. Sci., 7, 629 (1967).

    Google Scholar 

  32. P. T. Gilbert and S. E. Hadden.J. Inst. Metals, 78, 47 (1950).

    Google Scholar 

  33. W. Feitknecht and P. Schindler,Pure Appl. Chem., 6, 130 (1963).

    Google Scholar 

  34. P. W. Schindler,Adv. Chem., 67, 196 (1967).

    Google Scholar 

  35. M. Reinert, Thesis, Bern, 1965.

  36. J. D. Hem, in P. A. Krankel (Ed.),Heavy Metals in the Aquatic Environment, Pergamon, Oxford, 1975, pp. 149–153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alwan, A.K., Williams, P.A. Mineral formation from aqueous solution. Part I. The deposition of hydrozincite, Zn5(OH)6(CO3)2, from natural waters. Transition Met Chem 4, 128–132 (1979). https://doi.org/10.1007/BF00618840

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618840

Keywords

Navigation