Skip to main content
Log in

Synthesis of poly-1,1′-ferrocenylenesvia ferrocenylenecuprates(1)

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The solution polycondensation of TMEDA-chelated 1,1′-dilithioferrocene in the presence of Cu+ ion, leading to polyferrocenylenes, is explored, the cupration stoichiometry (Cu∶Li=ca. 0.5) being such as to favor the intermediacy of ferrocenylenecuprates, R2CuLi (R=0.5 ferrocenylene unit). In the first series of experiments, the cuprate intermediates are allowed to undergo thermal or oxidative poly-coupling; in subsequent experiments, they are copolymerized with 1,1′-diiodoferrocene. Both reaction sequences result in the formation of linear oligomeric and polymeric coupling products essentially identical in composition and spectroscopic properties with the poly-1,1′-ferrocenylenes of previous investigations. Best results are obtained in the copolymerizations with the diiodo derivative, which give higher overall yields (70–75%) and molecular masses (typically 4000 for the first fraction) than attained in earlier work. In addition, whereas previous syntheses involving either the oxidative coupling of the dilithioferrocene with Cu2+ ion or the oxidative-thermal coupling of ferroceny-lenecopper(I) intermediates gave large quantities of the dinuclear [0.0]-ferrocenophane at the expense of linear polyferrocenylenes, the copolymerizations with diiodoferrocene distinctly favor linear propagation, and yields of the ferrocenophane are less than one percent. The organocuprate/organoiodide coupling reaction thus constitutes a preparative approach to polyferrocenylenes superior to previous syntheses described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metallocene Polymers, 36. For Part 35, see Ref. 2.

    Google Scholar 

  2. E. W. Neuse and L. Bednarik,Transition Met. Chem., 4, 87 (1979).

    Google Scholar 

  3. For a summary of synthetic efforts extending up to 1970, see: E. W. Neuse and H. Rosenberg,Metallocene Polymers, Marcel Dekker, New York, 1970.

    Google Scholar 

  4. An excellent account of the mixed-valency behavior of some oligoferrocenylenes is available(4a), and several reports on polymeric ferrocenes with mixed-valency character have been published(4b–d). G. M. Brown, T. J. Meyer, D. O. Cowan, C. LeVanda, F. Kaufman, P. V. Roling and M. D. Rausch,Inorg. Chem., 14, 506 (1975);

    Google Scholar 

  5. C. U. Pittman, Jr., J. C. Lai, D. P. Vanderpool, M. Good and R. Prado,Macromolecules, 3, 746 (1970).

    Google Scholar 

  6. C. U. Pittman, Jr. and P. L. Grube,J. Appl. Polymer Sci., 18, 2269 (1974).

    Google Scholar 

  7. D. O. Cowan, J. Park, C. U. Pittman, Jr., Y. Sasaki, T. K. Mukherjee and N. A. Diamond,J. Am. Chem. Soc., 94, 5110 (1972); C. U. Pittman, Jr., Y. Sasaki and T. K. Mukherjee,Chem. Lett., 383 (1975).

    Google Scholar 

  8. C. U. Pittman, Jr., B. Surynarayanan and Y. Sasaki, in R. B. King, (Ed.),Inorganic Compounds with Unusual Properties, American Chemical Society, New York, 1976, Ch. 4.

    Google Scholar 

  9. V. V. Korshak, S. L. Sosin and V. P. Alekseeva,Dokl. Akad. Nauk. SSSR, 132, 360 (1960);Vysokomol. Soedin., 3, 1332 (1961).

    Google Scholar 

  10. A. N. Nesmeyanov, V. V. Korshak, V. V. Voevodskii, N. S. Kochetkova, S. L. Sosin, R. B. Materikova, T. N. Bolotnikova, V. M. Chibrikin and N. M. Bazhin,Dokl. Akad. Nauk. SSSR, 137, 1370 (1961).

    Google Scholar 

  11. H. Rosenberg and E. W. Neuse,J. Organometal. Chem., 6, 76 (1966). Despite the observed drastic structural deviations from (2), recombination polymers prepared subsequently by the Korshak process(7) have been used and labelled as polyferrocenylenes by a number of authors(4d, e).

    Google Scholar 

  12. N. Bilow, A. L. Landis and H. Rosenberg,J. Polym. Sci., A-1, 7, 2719 (1969); H. Rosenberg and N. Bilow,162nd Nat. Meeting, Am. Chem. Soc., Div. Org. Coat. Plast. Chem., Prepr., 31, 317 (1971).

    Google Scholar 

  13. A. N. Nesmeyanov, V. N. Drozd, V. A. Sazonova, V. I. Romanenko, A. K. Prokofiev and L. A. Nikonova,Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk, 667 (1963):

  14. M. D. Rausch, P. V. Roling and A. Siegel,Chem. Commun., 502 (1970); P. V. Roling and M. D. Rausch,J. Org. Chem., 37, 729 (1972);

  15. K. Hata, I. Motoyama and H. Watanabe,Bull. Chem. Soc. Japan, 37, 1719 (1964); H. Watanabe, I. Motoyama and K. Hata,ibid., 39, 790 (1966);

    Google Scholar 

  16. I. J. Spilners and J. P. Pellegrini, Jr.,J. Org. Chem., 30, 3800 (1965);

    Google Scholar 

  17. E. W. Neuse and R. K. Crossland,J. Organometal. Chem., 7, 344 (1967);

    Google Scholar 

  18. L. Bednarik, R. O. Gohdes and E. W. Neuse,Transition Met. Chem., 2, 212 (1977).

    Google Scholar 

  19. W. H. Mandeville and G. M. Whitesides,J. Org. Chem., 39, 400 (1974);

    Google Scholar 

  20. E. J. Corey and G. H. Posner,J. Am. Chem. Soc., 89, 3911 (1967); ibid.,90, 5615 (1968);

    Google Scholar 

  21. H. O. House,Proc. R. A. Welch Found. Conf. Chem. Res. XVII, 1974, Ch. 4;

  22. G. H. Posner,Org. React., 19, 1 (1972);22, 253 (1975);

    Google Scholar 

  23. M. R. Smith, Jr., M. T. Rahman and H. Gilman,Organometal. Chem. Syn., 1, 295 (1971);

    Google Scholar 

  24. M. Nilsson and R. Wahren,J. Organometal. Chem., 16, 515 (1969);

    Google Scholar 

  25. R. G. Pearson and C. D. Gregory,J. Am. Chem. Soc., 98, 4098 (1976);

    Google Scholar 

  26. G. van Koten, J. T. B. H. Jastrzebski and J. G. Noltes,J. Organometal. Chem., 140, C23 (1977); and refs cited in each of these papers;

    Google Scholar 

  27. The first report of an organocuprate synthesis stems from Gilman's school: H. Gilman, R. G. Jones and L. A. Woods,J. Org. Chem., 17, 1630 (1952).

    Google Scholar 

  28. Organocopper(I) compounds are generally much less reactive in the coupling process with halides (RCu + R'I → R-R′ + CuI) and so require higher temperatures or other means of assistance(9e, f, 10a–c). A. E. Jukes, S. S. Dua and H. Gilman,J. Organometal. Chem., 24, 791 (1970);

    Google Scholar 

  29. M. Nilsson and O. Wennerström,Acta. Chem. Scand., 24, 482 (1970); M. Nilsson and C. Ullenius,ibid., 24, 2379 (1970);

    Google Scholar 

  30. G. van Koten, R. W. M. ten Hoedt and J. G. Noltes,J. Org. Chem., 42, 2705 (1977).

    Google Scholar 

  31. The subject has been reviewed(9c, d, 11a), and an excellent kinetic study of the reaction of Equation 2b (R,R′ = Me) is available(9g). A. E. Jukes,Advan. Organometal. Chem., 12, 215 (1974).

    Google Scholar 

  32. M. D. Rausch and D. J. Ciappenelli,J. Organometal. Chem., 10, 127 (1967), M. D. Rausch, G. A. Moser and C. F. Meade,ibid., 51, 1 (1973).

    Google Scholar 

  33. It is also significant to note that no increase in coupling yield or ¯Mn was achieved by terminating the reactions with an oxidative post-treatment as found necessary(9c), or at least advantageous(13a), in analogous arylcuprate/aryl halide coupling reactions. This shows that ferrocenylcuprates are sufficiently reactive to bring about displacement without the oxidative assistance called for by the less nucleophilic arylcuprates; G. M. Whitesides, W. F. Fischer, Jr., J. San Filippo, Jr., R. W. Bashe and H. O. House,J. Am. Chem. Soc., 91, 4871 (1969).

    Google Scholar 

  34. It was pointed out before(2, 8c, f) that Rosenblum's ‘9,10-μm’ rule(14a) does not hold for polyferrocenylenes, which precludes application of the quantitative method of percentage homoannularity determination(14b) for the purpose of verifying structure (2); M. Rosenblum,PhD Thesis, Harvard University, 1953.

  35. E. W. Neuse and D. S. Trifan,J. Am. Chem. Soc., 85, 1952 (1963).

    Google Scholar 

  36. R. F. Kovar, M. D. Rausch and H. Rosenberg,Organometal. Chem. Syn., 1, 173 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuse, E.W., Bednarik, L. Synthesis of poly-1,1′-ferrocenylenesvia ferrocenylenecuprates(1) . Transition Met Chem 4, 104–108 (1979). https://doi.org/10.1007/BF00618834

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618834

Keywords

Navigation