Advertisement

Transition Metal Chemistry

, Volume 4, Issue 2, pp 87–94 | Cite as

Polyferrocenylenes by oxidative coupling of 1,1′-dilithioferrocene with Cu2+ Ion(1)

  • Eberhard W. Neuse
  • Ladislav Bednarik
Full Papers

Summary

The oxidative coupling of 1,1 ′-dilithioferrocene (chelated withN,N,N′,N′-tetramethylethylenediamine) in the presence of CuII halide (Cu2+∶Li=1−1.5) in ether solvents at −70 to 110° gives 30–45% yields of polyferrocenylene. Still higher yields of coupling products result from reactions in which oxidative coupling is paired with thermal coupling,i. e. C-C bond formation through thermal decomposition of organocopper(I) intermediates in the absence of external oxidant (Cu2+∶Li=0.5). Number-average molecular masses of the highest fractions of linear products (2) as separated in the primary work-up process are in the 1500–3400 range, and fractionating precipitation results in subfractions with Mn as high as 5000. Cyclization of dinuclear intermediates, producting up to 10% of [0,0] ferrocenophane (bisfulvalenediiron), competes in all experiments with linear propagation. Experiments conducted with CuI halides under conditions leading exclusively to thermal coupling provide even higher conversion to the ferrocenophane (up to 25% yields) at the expense of linear condensation products. Spectroscopic features of the polyferrocenylenes are discussed. In the linear compounds with ¯Mn>800, i.r. absorptions and p.m.r.'s are remarkably invariant with the degree of polymerization, as are the electronic absorption maxima. This shows, in confirmation of earlier reports, that there is insignificant resonance interaction between the cyclopentadienyl rings in the ferrocene system and hence little, if any, electronic delocalization along the polymer chain of heteroannularly interlinked polyferrocenylene structures.

Keywords

Halide Ferrocene Oxidative Coupling Coupling Product Thermal Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Metallocene Polymers, Part 35. Part 34: E. W. Neuse, in C. E. Carraher, Jr., J. E. Sheats and C. U. Pittman, Jr. (Eds.),Organometallic Polymers, Academic Press, New York, 1978, p. 95.Google Scholar
  2. (2).
    L. Bednarik, R. O. Gohdes and E. W. Neuse,Transition Met. Chem., 2, 212 (1977).Google Scholar
  3. (3a.)
    M. D. Rausch, G. A. Moser and C. F. Meade.J. Organometal. Chem. 51, 1 (1973).Google Scholar
  4. (3b.)
    M. D. Rausch and D. J. Ciappenelli,ibid., 10, 127 (1967).Google Scholar
  5. (4).
    The topic of mixed valencies in di- and oligonuclear ferrocenes has been most proficiently investigated by the schools of Cowan and Hendrickson. For very recent communications by these authors see: C. Le Vanda, K. Bechgaard and D. O. Cowan,J. Org. Chem., 41, 2700 (1976); C. LeVanda, D. O. Cowan, K. Bechgaard, U. T. Mueller-Westerhoff, P. Eilbracht, G. A. Candela and R. L. Collins,J. Am. Chem. Soc., 98, 3181 (1976); G. M. Brown, Th. J. Meyer, D. O. Cowan, C. LeVanda, F. Kaufman, P. V. Roling and M. D. Rausch,Inorg. Chem., 14, 506 (1975).Google Scholar
  6. (4a.)
    W. Morrison, Jr. and D. N. Hendrickson,Inorg. Chem., 14, 2331 (1975).Google Scholar
  7. (4b.)
    D. O. Cowan, C. LeVanda, J. Park and F. Kaufman,Accts. Chem. Res., 6, 1 (1973).Google Scholar
  8. (5).
    For an earlier history of polyferrocenylene chemistry, see E. W. Neuse,Advan. Macromol. Chem., 1, 1 (1968); E. W. Neuse and H. Rosenberg,Metallocene Polymers, Marcel Dekker, New York, 1970.Google Scholar
  9. (6).
    See, e.g.: H. Gilman and H. H. Parker,J. Am. Chem. Soc., 46, 2823 (1924); H. Gilman, R. G. Jones and L. A. Woods,ibid, 76, 3615 (1954).Google Scholar
  10. (7).
    J. Krizewsky and E. E. Turner,J. Chem. Soc., 115, 559 (1919); E. E. Turner,J. Proc. Roy. Soc. N.S.W., 54, 37 (1920).Google Scholar
  11. (8a.)
    For representative publications see: H. A. Staab and F. Binnig,Chem. Ber., 100, 293 (1967);Google Scholar
  12. (8b.)
    L. I. Zakharkin and A. I. Kovredov,Zh. Obshch. Khim., 44, 1840 (1974);Google Scholar
  13. (8c.)
    Th. Kauffmann, B. Greving, J. König, A. Mitschker and A. Woltermann,Angew. Chem. Int. Edit., 14, 713 (1975);Google Scholar
  14. (8d.)
    D. Hellwinkel, G. Reiff and V. Nykodym,Ann. Chem., 1013 (1977).Google Scholar
  15. (9).
    W. G. Nigh, in W. S. Trahanovsky, (Ed.),Oxidation in Organic Chemistry, Academic Press, New York, 1973, Ch. 1.Google Scholar
  16. (10).
    A. E. Jukes,Advan. Organometal. Chem., 12, 215 (1974).Google Scholar
  17. (11).
    Th. Kauffmann,Angew. Chem. Int. Edit., 13, 291 (1974).Google Scholar
  18. (12).
    H. Bräunling, F. Binnig and H. A. Staab,Chem. Ber., 100, 880 (1967).Google Scholar
  19. (13a.)
    An additional consideration is the notorious sensitivity of both diethyl ether and THF to nucleophilic and protophilic cleavage by organolithium reagents13a,b,c; by employing the butyl derivative expected to be less cleavage-prone than the shorter-chain ethyl homolog or the cyclic ether, we wished to reduce the risk of incorporating any of the (olefinic and alkoxide) cleavage products into the polymer backbone. G. Köbrich and A. Baumann,Angew. Chem. Int. Edit., 12, 856 (1973).Google Scholar
  20. (13b.)
    A. Maercker and J. Troesch,J. Organometal. Chem., 102, C1 (1975);Google Scholar
  21. (13c.)
    P. Tomboulian, D. Amick, S. Beare, K. Dumke, D. Hart, R. Hites, A. Metzger and R. Nowak,J. Org. Chem., 38, 322 (1973) and refs. in a–c.Google Scholar
  22. (14a.)
    The formation of ArCl in the oxidative coupling reaction of ArCu with CuCl2 was previously observed(14a,15a). Authentic(14b) 1′,6′-dichlorobiferrocenyl, mp 136–137°, i.r. 1342 (m), 1166(s), 833(s), isolated in an experiment conducted as Experiment 5 except with the reduction step omitted. Th. Kauffmann, B. Muke, R. Otter and D. Tigler,Angew. Chem. Int. Edit., 14, 714, (1975);Google Scholar
  23. (14b.)
    R. F. Kovar, M. D. Rausch and H. Rosenberg,Organometal. Chem. Syn., 1, 173 (1970).Google Scholar
  24. (15a.)
    We follow Jukes(10), van Koten and Noltes(15a), Posner(15b), and Whitesides(15d) in calling a decomposition process of type (3b)thermal, as the organocopper (I) cluster complex (for convenience written in equations 3 as monomeric species although in fact generally aggregated(10, 15a–c)) undergoes coupling (formation of R-R) in the absence of external oxidant (e.g. Cu2+ ion), that is, under conditions conducive to purely thermal decomposition of the complex. It should be recognized, however, that an internal redox process takes place in this ‘thermal’ decomposition, Cu0 being the eliminated species on formation of coupling product. G. van Koten, R. W. M. ten Hoedt and J. G. Noltes,J. Org. Chem., 42, 2705 (1977);Google Scholar
  25. (15b.)
    G. H. Posner,Org. React., 22, 253 (1975);Google Scholar
  26. (15c.)
    A. Cairncross, H. Omura and W. A. Sheppard,J. Am. Chem. Soc., 93, 248 (1971);Google Scholar
  27. (15d.)
    G. M. Whitesides, J. San Filippo, Jr., C. P. Casey and E. J. Panek,J. Am. Chem. Soc., 89, 5302 (1967); and refs. in a–d.Google Scholar
  28. (16).
    M. Nilsson and O. Wennerström,Tetrahedron Lett., 3307 (1968).Google Scholar
  29. (17a.)
    F. L. Hedberg and H. Rosenberg,J. Am. Chem. Soc., 91, 1258 (1969);Google Scholar
  30. (17b.)
    D. O. Cowan and C. LeVanda,ibid., 94, 9271 (1972);Google Scholar
  31. (17c.)
    U. T. Mueller-Westerhoff and P. Eilbracht,ibid., 94, 9272 (1972);Google Scholar
  32. (17d.)
    W. H. Morrison, Jr. and D. N. Hendrickson,Inorg. Chem., 14, 2331 (1975).Google Scholar
  33. (18a.)
    I. J. Spilners and J. P. Pellegrini, Jr.,J. Org. Chem., 30, 3800 (1965). We are greatly indebted to Dr Spilners for providing a sample of oligomeric (2) for spectral comparison.Google Scholar
  34. (18b.)
    H. Watanabe, I. Motoyama and K. Hata,Bull. Chem. Soc. Japan, 39, 790 (1966);Google Scholar
  35. (18c.)
    E. W. Neuse,J. Organometal. Chem., 40, 387 (1972);Google Scholar
  36. (18d.)
    T. Izumi and A. Kasahara,Bull. Chem. Soc. Japan, 48, 1955 (1975).Google Scholar
  37. (19).
    M. Rosenblum,Ph. D. Thesis, Harvard, 1953.Google Scholar
  38. (20).
    E. W. Neuse and L. Bednarik, in preparation.Google Scholar
  39. (22).
    E. W. Neuse, R. K. Crossland and K. Koda.J. Org. Chem., 31, 2409 (1966).Google Scholar
  40. (23).
    R. T. Bailey and E. R. Lippincott,Spectrochim. Acta, 21, 389 (1965).Google Scholar
  41. (23)a.
    J. N. Willis, M. T. Ryan, F. L. Hedberg and H. Rosenberg,ibid., 24A, 1561 (1968).Google Scholar
  42. (24a.)
    Ferrocene has been photolyzed in halocarbons(24a–d and in halocarbon/alkanol mixtures(24e). J. C. D. Brand and W. Snedden,Trans. Faraday Soc., 53, 894 (1957).Google Scholar
  43. (24b.)
    E. Körner von Gustorf, H. Koller, M.-J. Jun and C. O. Schenck,Chem. Eng. Tech., 35, 591 (1963);Google Scholar
  44. (24c.)
    E. Körner von Gustorf and F.-W. Grevels,Fortschr. Chem. Forsch., 13, 365 (1969).Google Scholar
  45. (24d.)
    O. Traverso and F. Scandola,Inorg. Chim. Acta, 4, 493 (1970).Google Scholar
  46. (24e.)
    T. Akiyama, A. Sugimori and H. Hermann,Bull. Chem. Soc. Japan, 46, 1855 (1973), and references therein.Google Scholar
  47. (25a.)
    Recent treatments of the electronic absorption spectrum of ferrocene, containing leading references on preceding work in the area, are available(25a,b). For outstanding earlier publications, see(25c–e). D. Nielson, M. Farmer and H. Eyring,J. Phys. Chem., 80, 717 (1976);Google Scholar
  48. (25b.)
    T. J. Barton, I. N. Douglas, R. Grinter and A. J. Thomson,J. Chem. Soc. Dalton Trans., 1948 (1976);Google Scholar
  49. (25c.)
    D. R. Scott and R. S. Becker,J. Chem. Phys., 35, 516, 2246 (1961);J. Organometal. Chem., 4, 409 (1965);Google Scholar
  50. (25d.)
    A. T. Armstrong, F. Smith, E. Elder and S. P. McGlynn,J. Chem. Phys., 46, 4321 (1967);Google Scholar
  51. (25e.)
    Y. S. Sohn, D. N. Hendrickson and H. B. Gray,J. Am. Chem. Soc., 93, 3603 (1971).Google Scholar
  52. (26a.)
    The u.v. spectrum of biferrocenyl was first published by Goldberg26a) and selected spectral data on bi- and terferrocenyl in cyclohexane(26b) or ethanol(17d, 18c, 26c) solutions were subsequently made available. S. I. Goldberg and D. W. Mayo,Chem. Ind., 671 (1959); S. I. Goldberg, D. W. Mayo and J. A. Alford.J. Org. Chem., 28, 1708 (1963);Google Scholar
  53. (26b.)
    B. M. Yavorskii, E. I. Afrina, N. S. Kochetkova and A. N. Nesmeyanov,Dokl. Acad. Nauk SSSR, 192, 350 (1970);Google Scholar
  54. (26c.)
    F. Kaufman and D. O. Cowan,J. Am. Chem. Soc., 92, 6198 (1970).Google Scholar
  55. (28).
    E. W. Neuse and R. K. Crossland,J. Organometal. Chem., 7, 344 (1967).Google Scholar
  56. (29).
    The lack of electronic delocalization across the metal center in ferrocenes is, of course, not a phenomenon peculiar to the structural system of (2), but may have to be accepted rather as a general electronic feature of heteroannularly disubstituted ferrocene compounds (see (5) for leading references).Google Scholar
  57. (30).
    T. H. Barr and W. E. Watts,J. Organometal. Chem., 15, 177 (1968); H. L. Lentzner and W. E. Watts, Chem. Commun., 26 (1970).Google Scholar
  58. (31).
    A. C. MacDonald and J. Trotter,Acta Crystallogr., 17, 872 (1964).Google Scholar
  59. (32).
    R. G. Pearson and C. D. Gregory,J. Am. Chem. Soc., 98, 4098 (1976).Google Scholar
  60. (32a.)
    See also G. B. Kauffman and L. A. Teter,Inorg. Syn., 7, 9 (1963).Google Scholar
  61. (33).
    In a series of preceding exploratory lithiation experiments, ferrocene recovery was found rather consistently to range from 17 to 23%.Google Scholar

Copyright information

© Verlag Chemie, Gmbh 1979

Authors and Affiliations

  • Eberhard W. Neuse
    • 1
  • Ladislav Bednarik
    • 1
  1. 1.Department of ChemistryUniversity of the WitwatersrandJohannesburgRSA

Personalised recommendations