Mechanics of Composite Materials

, Volume 16, Issue 1, pp 76–80 | Cite as

Deformation of blood vessels upon stretching, internal pressure, and torsion

  • V. A. Kas'yanov
  • A. I. Rachev


Blood Vessel Internal Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. J. Patel and D. L. Fry, “The elastic symmetry of arterial segments in dogs,” Circ. Research,24, No. 1, 1–8 (1969).Google Scholar
  2. 2.
    B. R. Simon, A. S. Kobayashi, D. E. Strandness, and C. A. Wiederhielm, “Large deformation analysis of the arterial cross section,” Trans. ASME, D93, No. 2, 138–145 (1971).Google Scholar
  3. 3.
    E. G. Tickner and A. H. Sacks, “A theory for the static elastic behavior of blood vessels,” Biorheology,4, No. 4, 151–168 (1967).Google Scholar
  4. 4.
    R. N. Vaishnav, J. T. Young, J. S. Janicki, and D. J. Patel, “Non-linear anisotropic elastic properties of the canine aorta,” Biophys. J.,12, No. 8, 1008–1027 (1972).Google Scholar
  5. 5.
    V. A. Kas'yanov, “An anisotropic nonlinearly elastic model of large human blood vessels,” Mekh. Polim., No. 5, 874–884 (1974).Google Scholar
  6. 6.
    A. H. Corneliussen and R. T. Shield, “Finite deformation of elastic membranes with application to the stability of an inflated and extended tube,” Arch. Ration. Mech. Anal.,7, 273–303 (1967).Google Scholar
  7. 7.
    A. Green and J. Adkins, Large Elastic Deformations, 2nd ed., Oxford Univ. Press (1971).Google Scholar
  8. 8.
    A. I. Rachev, “The propagation of a pulse wave in arterial vessels considering prior stresses and muscular activity,” Mekh. Polim., No. 2, 301–311 (1978).Google Scholar
  9. 9.
    V. A. Kas'yanov, É. É. Tseders, and B. A. Purinya, “Determination of the shear modulus of human blood vessel walls,” Mekh. Polim., No. 5, 927–929 (1978).Google Scholar
  10. 10.
    A. F. Kregers, “An algorithm for finding the minimum of multivariable functions by the method of descent,” Algoritmy Programmy, No. 2, 9 (1974).Google Scholar
  11. 11.
    A. I. Rachev, “Nonlinear mechanical behavior of elastic orthotropic membranes,” in: Introduction to Biomechanics, Biomechanics [in Bulgarian], Book 9, Sofia (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. A. Kas'yanov
    • 1
    • 2
  • A. I. Rachev
    • 1
    • 2
  1. 1.Institute of Polymer MechanicsAcademy of Sciences of the Latvian SSRRiga
  2. 2.Institute of Mechanics and BiomechanicsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations