Advertisement

Applied Physics A

, Volume 45, Issue 1, pp 73–76 | Cite as

Blocking of silicon oxidation by low-dose nitrogen implantation

  • K. Schott
  • K. C. Hofmann
  • M. Schulz
Surfaces, and Interfaces and Layer Structures

Abstract

The oxidation characteristics of silicon implanted with a low dose of nitrogen (1–3×1015cm−2) have been studied for dry oxidation conditions at 1020°C. The wafers were subjected to a pre-oxidation annealing. Complete inhibition of the oxide growth occurs in the initial stage of oxidation, while the oxidation rate for prolonged oxidation is identical to that for pure silicon. The oxidation resistance increases with the implantation dose. The resistance is attributed to the formation of a nitrogen-rich surface film during annealing. This layer, which consists of only a few monolayers, is presumably composed of oxynitride. The electrical characteristics of MOS capacitors formed on implanted wafers show that the interface state density is not significantly increased by the low-dose N implantation.

PACS

68.55.+b 73.40.Qv 73.20.Hb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.J.M.J. Josquin: Nucl. Instr. Meth.209, 581 (1983)Google Scholar
  2. 2.
    T.Y. Chiu, H. Bernt, I. Ruge: U. Electrochem. Soc.131, 1934 (1982)Google Scholar
  3. 3.
    M.J. Kim, M. Ghezzo: J. Electrochem. Soc.131, 1934 (1984)Google Scholar
  4. 4.
    J. Hui, T.Y. Chiu, S. Wong, W.G. Oldham: IEEE EDL-2, 244 (1981)Google Scholar
  5. 5.
    M. Ramin, H. Ryssel, H. Kranz: Appl. Phys.22, 393 (1980)Google Scholar
  6. 6.
    J.R. Troxell, D.E. Moss: J. Electrochem. Soc.131, 2353 (1984)Google Scholar
  7. 7.
    W.J.M.J. Josquin, Y. Tamminga: J. Electrochem. Soc.129, 1803 (1982)Google Scholar
  8. 8.
    T.Y. Chiu, W.G. Oldham, C. Hovland: J. Electrochem. Soc.131, 2110 (1984)Google Scholar
  9. 9.
    R. Hezel, N. Lieske: J. Electrochem. Soc.129, 379 (1982)Google Scholar
  10. 10.
    C.R. Fritzsche, W. Rothemund: J. Electrochem. Soc.120, 1603 (1973)Google Scholar
  11. 11.
    M. Schulz, M. Klausmann: Appl. Phys.18, 196 (1979)Google Scholar
  12. 12.
    S.S. Wong, W.G. Oldham: IEEE Trans. ED-32, 978 (1985)Google Scholar
  13. 13.
    J. Nulman, J.P. Krusius: Appl. Phys. Lett.47, 148 (1985)Google Scholar
  14. 14.
    S.P. Murarka, C.C. Chang, A.C. Adams: J. Electrochem. Soc.126, 996 (1979)Google Scholar
  15. 15.
    C.Y. Wu, C.W. King, M.K. Lee, C.T. Chen, C.T. Shih: J. Electrochem. Soc.130, 458 (1983)Google Scholar
  16. 16.
    B.E. Deal, A.S. Grove: J. Appl. Phys.36, 3770 (1965)Google Scholar
  17. 17.
    S.I. Raider, R. Flitsch, J.A. Aboaf, W.A. Pliskin: J. Electrochem. Soc.123, 560 (1976)Google Scholar
  18. 18.
    J.B. Mitchel, J. Shewchun, D.A. Thompson, J.A. Davies: J. Appl. Phys.46, 335 (1975)Google Scholar
  19. 19.
    D.E. Davies, J.A. Adamski, E.F. Kennedy: Appl. Phys. Lett.48, 347 (1986)Google Scholar
  20. 20.
    C.T. Chen, F.C. Tseng, C.Y. Chang, M.K. Lee: J. Electrochem. Soc.131, 875 (1984)Google Scholar
  21. 21.
    Landolt-Börnstein III/17cSemiconductor Technology, ed. by M. Schulz, H. Weiss (Springer, Berlin, Heidelberg 1984) pp. 214 and 531Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • K. Schott
    • 1
  • K. C. Hofmann
    • 1
  • M. Schulz
    • 1
  1. 1.Institut für Angewandte Physik, UniversitätErlangenGermany

Personalised recommendations