Advertisement

Applied Physics A

, Volume 33, Issue 3, pp 167–173 | Cite as

Ion mixing in Al, Si, and their oxides

  • A. J. Barcz
  • M. -A. Nicolet
Contributed Papers

Abstract

The redistribution of thin metallic markers due to ion irradiation was studied by backscattering spectrometry in Al, Al2O3, Si, and SiO2. Marker species were selected for their similar masses and different chemical reactivities with the host media and included Ti, Fe, W, Pt, and Au. It was found that the marker signals are Gaussian and that the varianceσ2 of the marker atom distributions increases linearly with the dose of the irradiation, is insensitive to the temperature of irradiation in the range of 80–∼300 K, and depends linearly on the nuclear stopping power of the incident ions. The absolute values ofσ2 for Ti, Fe, W, Pt, and Au markers in Al and Al2O3, W, and Pt in SiO2 and W in Si is, within±50 %, of 6.5×103Å2 for 300 keV, 8×1015 Xe ions/cm2. These observations suggest that collisional cascade mixing is a dominant mechanism in this type of impurity-matrix combinations. Only Au and Pt in Si mix at a larger rate:σ2 for Pt is about 3 and for Au about 5 times larger thanσ2 for all other markers. Lower threshold displacement energies and/or the contribution of processes other than cascade mixing are possible considered reasons. In polycrystalline Al, a rapid migration of Au and Pt atoms throughout the Al layer, similar to grain boundary diffusion, is observed.

PACS

66.30 jt 79.20.Nc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Matteson, M.-A. Nicolet: Annu. Rev. Mater. Sci.13, 339 (1983)Google Scholar
  2. 2.
    G. Dearnaley: Radiat. Eff.63, 25 (1982)Google Scholar
  3. 3.
    H.H. Andersen: Appl. Phys.18, 131 (1979)Google Scholar
  4. 4.
    P.K. Haff, Z. E. Switkowski: J. Appl. Phys.48, 3383 (1977)Google Scholar
  5. 5.
    P. Sigmund, A. Gras-Marti: Nucl. Instrum. Methods182/183, 25 (1981)Google Scholar
  6. 6.
    S. Matteson, B.M. Paine, M.-A. Nicolet: Nucl. Instrum. Methods182/183, 53 (1981)Google Scholar
  7. 7.
    U. Littmark, H.O. Hofer: Nucl. Instrum. Methods168, 329 (1980)Google Scholar
  8. 8.
    G.T. Dienes, A.C. Damask: J. Appl. Phys.29, 1713 (1958)Google Scholar
  9. 9.
    R. Sizmann: J. Nucl. Mater.69 and70, 386 (1968)Google Scholar
  10. 10.
    S.M. Myers: Nucl. Instrum. Methods168, 265 (1980)Google Scholar
  11. 11.
    P. Sigmund: Appl. Phys. A30, 43 (1983)Google Scholar
  12. 12.
    J.A. Brinkman: Am. J. Phys.24, 246 (1956)Google Scholar
  13. 13.
    P. Sigmund: Appl. Phys. Lett.25, 169 (1974)Google Scholar
  14. 14.
    S. Matteson, J. Roth, M.-A. Nicolet: Radiat. Eff.42, 217 (1979)Google Scholar
  15. 15.
    L.S. Wieluński, B.M. Paine, B.X. Liu, C.-D. Lien, M.-A. Nicolet: Phys. stat. sol. (a)72, 399 (1982)Google Scholar
  16. 16.
    J.W. Mayer, B.Y. Tsaur, S.S. Lau, L.-S. Hung: Nucl. Instrum. Methods182/183, 1 (1982)Google Scholar
  17. 17.
    B.Y. Tsaur, S. Matteson, G. Chapman, Z.L. Liau, M.-A. Nicolet: Appl. Phys. Lett.35, 825 (1979)Google Scholar
  18. 18.
    S. Matteson, B.M. Paine, M.G. Grimaldi, G. Mezey, M.-A. Nicolet: Nucl. Instrum. Methods182/183, 43 (1981)Google Scholar
  19. 19.
    A.J. Barcz, B.M. Paine, M.-A. Nicolet: Appl. Phys. Lett. (in press)Google Scholar
  20. 20.
    B.M. Paine, M.-A. Nicolet, T.C. Banwell: InMetastable Materials Formation by Ion Implantation, ed. by S.T. Picraux, W.J. Choyke (North-Holland, New York 1982) MRS Symposia Proceedings, Vol. 7, p. 79Google Scholar
  21. 21.
    S. Matteson, G. Mezey, M.-A. Nicolet: InThin Film Interfaces and Interactions, ed. by J.E.E. Baglin, J.M. Poate (Electrochemical Society, Princeton, NJ 1980) Vol. 80-2, p. 242Google Scholar
  22. 22.
    Z.L. Wang, J.-F.M. Westendorp, F.W. Saris: Nucl. Instrum. Methods209/210, 115 (1983)Google Scholar
  23. 23.
    G.J. Clark, A.D. Marwick, D.B. Poker: Nucl. Instrum. Methods209/210, 107 (1983)Google Scholar
  24. 24.
    J.F. Gibbons, W.S. Johnson, S.W. Mylroie:Projected Range Statistics, 2nd ed. (Halsted Press, New York 1975)Google Scholar
  25. 25.
    B. Smith:Ion Implantation Range Data for Si and GeDevice Technologies (Research Studies Press, Oregon 1977)Google Scholar
  26. 26.
    J.L. Whitton, W.A. Grant: Nucl. Instrum. Methods182/183, 287 (1981)Google Scholar
  27. 27.
    H.H. Andersen, H.L. Bay: InSputtering by Particle Bombardment I, ed. by R. Behrisch, Topics Appl. Phys.47 (Springer, Berlin, Heidelberg, New York 1981) p. 168Google Scholar
  28. 28.
    B.M. Paine: J. Appl. Phys.53, 6828 (1982)Google Scholar
  29. 29.
    A.S. Grove:Physics and Technology of Semiconductor Devices (Wiley, New York 1967)Google Scholar
  30. 30.
    W.K. Chu, J.W. Mayer, M.-A. Nicolet:Backscattering Spectrometry (Academic Press, New York 1978)Google Scholar
  31. 31.
    J.L. Chen, L.S. Hung, J.W. Mayer: Appl. Surf. Sci.11, (1982)Google Scholar
  32. 32.
    K.B. Winterbon:Ion Implantation Range and Energy Deposition Distributions (Plenum Press, New York 1975) Vol. 2Google Scholar
  33. 33.
    R.C. Weast, M.Y. Astle (eds.):Handbook of Chemistry and Physics (CRC Press, Boca Raton 1981)Google Scholar
  34. 34.
    J.F. Graczyk, P. Chaudham: Phys. Status Solidi (b)58, 163 (1973)Google Scholar
  35. 35.
    R.S. Averback, L.J. Thompson, J. Moyle, M. Schalit: J. Appl. Phys.53, 1342 (1982)Google Scholar
  36. 36.
    J.C. Bourgoin, J.W. Corbett: Radiat. Eff.36, 157 (1978)Google Scholar
  37. 37.
    D.A. Thompson: Radiat. Eff.56, 105 (1981)Google Scholar
  38. 38.
    S.H. Vineyard: Radiat. Eff.29, 245 (1976)Google Scholar
  39. 39.
    F. Seitz, J.S. Koechler: Solid State Phys.2, 307 (1956)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. J. Barcz
    • 1
  • M. -A. Nicolet
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations