Skip to main content
Log in

Stability and transient response of an electrolytic reactor

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Using a continuous flow stirred tank electrochemical reactor model, the stability and transient response of electrolytic reactors is analysed in terms of a Liapunov function and digital simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a e :

electrode area

A i :

reactor wall area; i=2, 3, 4, 5 denote the four vertical walls of a rectangular tank;A 1 is tank bottom area;A 6 is area of the electrolyte surface

b :

slope of the polarization curve

c :

electrolyte concentration;c i its inlet value;c * its steady state value

C p :

specific heat of the electrolyte

d 1 :

thickness of the reactor walls

F :

Faraday's constant

G :

electrolyte mass flow rate

h 6 :

heat transfer coefficient associated with electrolyte surfaceA 6

I :

electric current

k :

geometric aspect ratio (electrode separation distance divided by electrode area)

k 1 :

thermal conductivity of the reactor wall

m e :

mass of the electrolyte in the reactor

Q :

quantity defined by Equation 8a

Q L :

rate of heat dissipation

q :

electrolyte volumetric flow rate

R :

quantity defined by Equation 8b

R e :

electrolyte resistance

S :

quantity defined by Equation 8c

T :

electrolyte temperature;T i its inlet values,T * its steady state value

t a :

ambient temperature

t f :

floor temperature

t :

time

U :

voltage drop

U i :

wall-to-ambient overall heat transfer coefficient associated with wallA i

V(x):

Liapunov function

V t :

active reactor volume (free electrolyte volume)

X 1 :

dimensionless temperature

x 2 :

dimensionless concentration

z :

valency

α, β :

lumped parameters defined by Equations 19a and b

ΔHR :

heat of reaction

ε, δ :

parameters of the Liapunov matrix

γ :

quantity defined by Equation 8e

Γ:

quantity defined by Equation 9a

θ :

dimensionless time

π :

electrolyte density

σ :

electrolyte conductivity

φ * :

quantity defined by Equation 9b

ψ :

quantity defined by Equation 8d

x1, x2 :

derivatives of x1 and x2 with respect to θ (Equation 12)

References

  1. T. Z. Fahidy,Can. J. Chem. Eng. 44 (1966) 174.

    Google Scholar 

  2. R. D. Brennan and T. Z. Fahidy,Instrum. Contr. Syst. 39 (1966) 133.

    Google Scholar 

  3. K. H. Lee and T. Z. Fahidy,ibid. 40 (1967) 141.

    Google Scholar 

  4. A. B. Babajide and T. Z. Fahidy,Can. J. Chem. Eng. 46 (1968) 253.

    Google Scholar 

  5. Idem, Chem. Eng. Sci. 26 (1971) 969.

    Google Scholar 

  6. Y. Fukunaka, T. Minegishi, N. Nishioka and Y. Kondo,J. Electrochem. Soc. 128 (1981) 1274.

    Google Scholar 

  7. A. K. P. Chu, M. Fleischmann and G. J. Hills,J. Appl. Electrochem. 4 (1974) 323.

    Google Scholar 

  8. D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier, Amsterdam (1979).

    Google Scholar 

  9. D. D. Perlmutter, ‘Stability of Chemical Reactors’, Prentice Hall, Englewood Cliffs, New Jersey (1972).

    Google Scholar 

  10. T. Z. Fahidy,Appl. Math. Modelling 4 (1980) 59.

    Google Scholar 

  11. Idem, J. Electrochem. Soc. 129 (1982) 953.

    Google Scholar 

  12. T. L. Saaty and J. Bram, ‘Nonlinear Mathematics’, McGraw Hill, New York (1964).

    Google Scholar 

  13. H. Hochstadt, ‘Differential Equations’, Holt Reinhart and Winston, New York (1965).

    Google Scholar 

  14. J. F. LaSalle and S. Lefschetz, ‘Stability by Liapunov's Direct Method With Applications’, Academic Press, New York (1961).

    Google Scholar 

  15. J. C. Friedly, ‘Dynamic Behaviour of Processes’, Prentice Hall, Englewood Cliffs, New Jersey (1972).

    Google Scholar 

  16. R. E. Kalman and J. E. Bertram,Trans. ASME Series D 82 (1960) 371.

    Google Scholar 

  17. D. C. Price, H. Larsson and W. G. Davenport,Nouv. J. Chim. 4 (1980) 7.

    Google Scholar 

  18. T. Z. Fahidy,Simulation 5 (1965) 384.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahidy, T.Z. Stability and transient response of an electrolytic reactor. J Appl Electrochem 14, 231–240 (1984). https://doi.org/10.1007/BF00618741

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00618741

Keywords

Navigation